結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-10 06:40:55 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 15 ms / 5,000 ms |
| コード長 | 8,951 bytes |
| コンパイル時間 | 2,466 ms |
| コンパイル使用メモリ | 217,144 KB |
| 最終ジャッジ日時 | 2025-01-07 17:33:54 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
#include <bits/stdc++.h>
#define LLI long long int
#define FOR(v, a, b) for(LLI v = (a); v < (b); ++v)
#define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(LLI v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define popcount __builtin_popcount
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(...) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
struct Init{
Init(){
cin.tie(0);
ios::sync_with_stdio(false);
}
}init;
template <uint32_t M> class ModInt{
public:
uint64_t val;
ModInt(): val(0){}
ModInt(int64_t n){
if(n >= M) val = n % M;
else if(n < 0) val = n % M + M;
else val = n;
}
inline constexpr ModInt operator+(const ModInt &a) const {return ModInt((val+a.val)%M);}
inline constexpr ModInt operator-(const ModInt &a) const {return ModInt((val-a.val+M)%M);}
inline constexpr ModInt operator*(const ModInt &a) const {return ModInt((val*a.val)%M);}
inline constexpr ModInt operator/(const ModInt &a) const {return ModInt((val*a.inv().val)%M);}
inline constexpr ModInt& operator=(const ModInt &a){val = a.val; return *this;}
inline constexpr ModInt& operator+=(const ModInt &a){if((val += a.val) >= M) val -= M; return *this;}
inline constexpr ModInt& operator-=(const ModInt &a){if(val < a.val) val += M; val -= a.val; return *this;}
inline constexpr ModInt& operator*=(const ModInt &a){(val *= a.val) %= M; return *this;}
inline constexpr ModInt& operator/=(const ModInt &a){(val *= a.inv().val) %= M; return *this;}
inline constexpr bool operator==(const ModInt &a) const {return val==a.val;}
inline constexpr bool operator!=(const ModInt &a) const {return val!=a.val;}
inline constexpr static ModInt power(LLI n, LLI p){
ModInt ret = 1, e = n;
for(; p; e *= e, p >>= 1) if(p&1) ret *= e;
return ret;
}
inline constexpr ModInt power(LLI p) const{return power(val,p);}
inline constexpr ModInt inv() const{
int64_t a = val, b = M, u = 1, v = 0;
while(b){
int64_t t = a/b;
a -= t*b; swap(a,b);
u -= t*v; swap(u,v);
}
u %= M;
if(u < 0) u += M;
return u;
}
};
template <uint32_t M> ModInt<M> operator-(const ModInt<M> &a){return M-a.val;}
template <uint32_t M> ModInt<M> operator+(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)+b.val);}
template <uint32_t M> ModInt<M> operator-(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)-b.val);}
template <uint32_t M> ModInt<M> operator*(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)*b.val);}
template <uint32_t M> ModInt<M> operator/(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)/b.val);}
template <uint32_t M> istream& operator>>(istream &is, ModInt<M> &a){is >> a.val; return is;}
template <uint32_t M> ostream& operator<<(ostream &os, const ModInt<M> &a){ os << a.val; return os;}
template <typename T> struct SquareMatrix{
int N;
vector<vector<T>> matrix;
SquareMatrix(): N(0){}
SquareMatrix(int N): N(N), matrix(N, vector<T>(N)){}
SquareMatrix(int N, const T &val): N(N), matrix(N, vector<T>(N, val)){}
SquareMatrix(const vector<vector<T>> &matrix): N(matrix.size()), matrix(matrix){}
SquareMatrix(const SquareMatrix<T> &) = default;
SquareMatrix(SquareMatrix<T> &&) = default;
SquareMatrix(initializer_list<initializer_list<T>> list): N(list.size()), matrix(N, vector<T>(N)){
int i = 0;
ITR(it1,list){
int j = 0;
ITR(it2,*it1){
matrix[i][j] = *it2;
++j;
}
++i;
}
}
SquareMatrix& operator=(const SquareMatrix &val){
N = val.N;
matrix = val.matrix;
return *this;
}
bool operator==(const SquareMatrix<T> &val) const {
return matrix == val.matrix;
}
bool operator!=(const SquareMatrix<T> &val) const {
return !(*this == val);
}
SquareMatrix& operator+=(const SquareMatrix &val){
REP(i,N) REP(j,N) matrix[i][j] = matrix[i][j] + val[i][j];
return *this;
}
SquareMatrix& operator-=(const SquareMatrix &val){
REP(i,N) REP(j,N) matrix[i][j] = matrix[i][j] - val[i][j];
return *this;
}
SquareMatrix& operator*=(const SquareMatrix &val){
vector<vector<T>> temp(N, vector<T>(N));
REP(i,N) REP(j,N) REP(k,N) temp[i][j] = temp[i][j] + matrix[i][k] * val[k][j];
swap(matrix, temp);
return *this;
}
inline const vector<T>& operator[](size_t i) const {return matrix[i];}
inline vector<T>& operator[](size_t i){return matrix[i];}
inline int size() const {return N;}
static SquareMatrix<T> make_unit(int N){
SquareMatrix<T> ret(N);
REP(i,N) ret[i][i] = 1;
return ret;
}
SquareMatrix<T> transpose() const{
SquareMatrix<T> ret(N);
REP(i,N) REP(j,N) ret[i][j] = matrix[j][i];
return ret;
}
void show(int w = 10) const {
#ifdef DEBUG
REP(i,N){
cerr << (i==0 ? "⎛" : (i==N-1 ? "⎝" : "⎜"));
REP(j,N) cerr << setw(w) << matrix[i][j] << " ";
cerr << (i==0 ? "⎞" : (i==N-1 ? "⎠" : "⎟"));
cerr << endl;
}
#endif
}
};
template <typename T> SquareMatrix<T> operator+(const SquareMatrix<T> &a, const SquareMatrix<T> &b){auto ret = a; ret += b; return ret;}
template <typename T> SquareMatrix<T> operator-(const SquareMatrix<T> &a, const SquareMatrix<T> &b){auto ret = a; ret -= b; return ret;}
template <typename T> SquareMatrix<T> operator*(const SquareMatrix<T> &a, const SquareMatrix<T> &b){auto ret = a; ret *= b; return ret;}
template <typename T> SquareMatrix<T> power(SquareMatrix<T> a, uint64_t p){
int N = a.size();
if(p == 0) return SquareMatrix<T>::make_unit(N);
if(p == 1) return a;
SquareMatrix<T> temp = power(a, p/2);
auto ret = temp * temp;
if(p%2) ret *= a;
return ret;
}
template <typename T> vector<T> operator*(const SquareMatrix<T> &a, const vector<T> &b){
vector<T> ret(a.size());
REP(i,a.size()){
REP(j,a.size()){
ret[i] += a[i][j] * b[j];
}
}
return ret;
}
template <typename T> vector<T> operator*(const vector<T> &b, const SquareMatrix<T> &a){
vector<T> ret(a.size());
REP(i,a.size()){
REP(j,a.size()){
ret[j] += b[i] * a[i][j];
}
}
return ret;
}
template <typename T>
bool inverse_matrix(SquareMatrix<T> m, SquareMatrix<T> &ret){
int N = m.size();
ret = SquareMatrix<T>::make_unit(N);
REP(i,N){
int p = i;
FOR(j,i,N){
if(m[i][j] != 0){
p = j;
break;
}
}
swap(m[i], m[p]);
swap(ret[i], ret[p]);
{
T d = m[i][i];
if(d == 0) return false;
REP(j,N){
m[i][j] /= d;
ret[i][j] /= d;
}
}
REP(j,N){
if(i==j) continue;
T d = m[j][i] / m[i][i];
REP(k,N){
m[j][k] -= m[i][k] * d;
ret[j][k] -= ret[i][k] * d;
}
}
}
return true;
}
const LLI mod = 1e9+7;
using mint = ModInt<mod>;
using M = SquareMatrix<mint>;
pair<mint,mint> solve1(int N, LLI K, vector<int> a){
M m(N);
REP(i,N) m[0][i] = 1;
REP(i,N-1) m[i+1][i] = 1;
auto m2 = power(m,K-N);
reverse(ALL(a));
vector<mint> A(N);
REP(i,N) A[i] = a[i];
auto b = m2 * A;
mint f = b[0];
mint s = accumulate(ALL(a), 0);
M c;
auto t = M::make_unit(N)-m;
inverse_matrix(t,c);
auto temp = (M::make_unit(N)-power(m,K-N+1)) * c;
temp -= M::make_unit(N);
auto B = temp * A;
s += B[0];
return {f,s};
}
pair<mint,mint> solve2(int N, LLI K, vector<int> a){
vector<mint> v(K);
mint temp = 0;
REP(i,N){
temp += a[i];
v[i] = a[i];
}
FOR(i,N,K){
v[i] = temp;
temp += v[i];
temp -= v[i-N];
}
mint f = v.back();
mint s = 0;
for(auto &x : v) s += x;
return {f,s};
}
int main(){
LLI N,K;
while(cin >> N >> K){
vector<int> a(N); cin >> a;
pair<mint,mint> ans;
if(K > 1000000) ans = solve1(N,K,a);
else ans = solve2(N,K,a);
cout << ans.fst << " " << ans.snd << endl;
}
return 0;
}