結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | Haar |
提出日時 | 2019-09-10 06:40:55 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 13 ms / 5,000 ms |
コード長 | 8,951 bytes |
コンパイル時間 | 2,396 ms |
コンパイル使用メモリ | 225,420 KB |
実行使用メモリ | 11,028 KB |
最終ジャッジ日時 | 2024-07-02 16:13:58 |
合計ジャッジ時間 | 4,086 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 13 ms
6,940 KB |
testcase_03 | AC | 3 ms
6,940 KB |
testcase_04 | AC | 6 ms
6,944 KB |
testcase_05 | AC | 5 ms
6,940 KB |
testcase_06 | AC | 6 ms
6,944 KB |
testcase_07 | AC | 9 ms
6,944 KB |
testcase_08 | AC | 3 ms
6,940 KB |
testcase_09 | AC | 8 ms
6,940 KB |
testcase_10 | AC | 3 ms
6,944 KB |
testcase_11 | AC | 4 ms
6,940 KB |
testcase_12 | AC | 5 ms
6,944 KB |
testcase_13 | AC | 3 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 11 ms
6,940 KB |
testcase_16 | AC | 9 ms
6,940 KB |
testcase_17 | AC | 4 ms
6,940 KB |
testcase_18 | AC | 9 ms
6,940 KB |
testcase_19 | AC | 12 ms
6,944 KB |
testcase_20 | AC | 9 ms
11,004 KB |
testcase_21 | AC | 8 ms
11,028 KB |
testcase_22 | AC | 8 ms
10,956 KB |
testcase_23 | AC | 3 ms
6,944 KB |
testcase_24 | AC | 5 ms
6,940 KB |
testcase_25 | AC | 5 ms
6,940 KB |
testcase_26 | AC | 5 ms
6,940 KB |
testcase_27 | AC | 5 ms
7,424 KB |
testcase_28 | AC | 3 ms
6,944 KB |
testcase_29 | AC | 8 ms
10,400 KB |
testcase_30 | AC | 13 ms
6,940 KB |
testcase_31 | AC | 2 ms
6,940 KB |
testcase_32 | AC | 5 ms
6,944 KB |
testcase_33 | AC | 6 ms
6,940 KB |
testcase_34 | AC | 5 ms
6,940 KB |
testcase_35 | AC | 5 ms
6,944 KB |
testcase_36 | AC | 11 ms
6,940 KB |
testcase_37 | AC | 2 ms
6,940 KB |
testcase_38 | AC | 12 ms
6,940 KB |
testcase_39 | AC | 6 ms
6,944 KB |
ソースコード
#include <bits/stdc++.h> #define LLI long long int #define FOR(v, a, b) for(LLI v = (a); v < (b); ++v) #define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(LLI v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define fst first #define snd second #define popcount __builtin_popcount #define UNIQ(v) (v).erase(unique(ALL(v)), (v).end()) #define bit(i) (1LL<<(i)) #ifdef DEBUG #include <misc/C++/Debug.cpp> #else #define dump(...) ((void)0) #endif #define gcd __gcd using namespace std; template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;} template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;} template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);} template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);} template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} struct Init{ Init(){ cin.tie(0); ios::sync_with_stdio(false); } }init; template <uint32_t M> class ModInt{ public: uint64_t val; ModInt(): val(0){} ModInt(int64_t n){ if(n >= M) val = n % M; else if(n < 0) val = n % M + M; else val = n; } inline constexpr ModInt operator+(const ModInt &a) const {return ModInt((val+a.val)%M);} inline constexpr ModInt operator-(const ModInt &a) const {return ModInt((val-a.val+M)%M);} inline constexpr ModInt operator*(const ModInt &a) const {return ModInt((val*a.val)%M);} inline constexpr ModInt operator/(const ModInt &a) const {return ModInt((val*a.inv().val)%M);} inline constexpr ModInt& operator=(const ModInt &a){val = a.val; return *this;} inline constexpr ModInt& operator+=(const ModInt &a){if((val += a.val) >= M) val -= M; return *this;} inline constexpr ModInt& operator-=(const ModInt &a){if(val < a.val) val += M; val -= a.val; return *this;} inline constexpr ModInt& operator*=(const ModInt &a){(val *= a.val) %= M; return *this;} inline constexpr ModInt& operator/=(const ModInt &a){(val *= a.inv().val) %= M; return *this;} inline constexpr bool operator==(const ModInt &a) const {return val==a.val;} inline constexpr bool operator!=(const ModInt &a) const {return val!=a.val;} inline constexpr static ModInt power(LLI n, LLI p){ ModInt ret = 1, e = n; for(; p; e *= e, p >>= 1) if(p&1) ret *= e; return ret; } inline constexpr ModInt power(LLI p) const{return power(val,p);} inline constexpr ModInt inv() const{ int64_t a = val, b = M, u = 1, v = 0; while(b){ int64_t t = a/b; a -= t*b; swap(a,b); u -= t*v; swap(u,v); } u %= M; if(u < 0) u += M; return u; } }; template <uint32_t M> ModInt<M> operator-(const ModInt<M> &a){return M-a.val;} template <uint32_t M> ModInt<M> operator+(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)+b.val);} template <uint32_t M> ModInt<M> operator-(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)-b.val);} template <uint32_t M> ModInt<M> operator*(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)*b.val);} template <uint32_t M> ModInt<M> operator/(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)/b.val);} template <uint32_t M> istream& operator>>(istream &is, ModInt<M> &a){is >> a.val; return is;} template <uint32_t M> ostream& operator<<(ostream &os, const ModInt<M> &a){ os << a.val; return os;} template <typename T> struct SquareMatrix{ int N; vector<vector<T>> matrix; SquareMatrix(): N(0){} SquareMatrix(int N): N(N), matrix(N, vector<T>(N)){} SquareMatrix(int N, const T &val): N(N), matrix(N, vector<T>(N, val)){} SquareMatrix(const vector<vector<T>> &matrix): N(matrix.size()), matrix(matrix){} SquareMatrix(const SquareMatrix<T> &) = default; SquareMatrix(SquareMatrix<T> &&) = default; SquareMatrix(initializer_list<initializer_list<T>> list): N(list.size()), matrix(N, vector<T>(N)){ int i = 0; ITR(it1,list){ int j = 0; ITR(it2,*it1){ matrix[i][j] = *it2; ++j; } ++i; } } SquareMatrix& operator=(const SquareMatrix &val){ N = val.N; matrix = val.matrix; return *this; } bool operator==(const SquareMatrix<T> &val) const { return matrix == val.matrix; } bool operator!=(const SquareMatrix<T> &val) const { return !(*this == val); } SquareMatrix& operator+=(const SquareMatrix &val){ REP(i,N) REP(j,N) matrix[i][j] = matrix[i][j] + val[i][j]; return *this; } SquareMatrix& operator-=(const SquareMatrix &val){ REP(i,N) REP(j,N) matrix[i][j] = matrix[i][j] - val[i][j]; return *this; } SquareMatrix& operator*=(const SquareMatrix &val){ vector<vector<T>> temp(N, vector<T>(N)); REP(i,N) REP(j,N) REP(k,N) temp[i][j] = temp[i][j] + matrix[i][k] * val[k][j]; swap(matrix, temp); return *this; } inline const vector<T>& operator[](size_t i) const {return matrix[i];} inline vector<T>& operator[](size_t i){return matrix[i];} inline int size() const {return N;} static SquareMatrix<T> make_unit(int N){ SquareMatrix<T> ret(N); REP(i,N) ret[i][i] = 1; return ret; } SquareMatrix<T> transpose() const{ SquareMatrix<T> ret(N); REP(i,N) REP(j,N) ret[i][j] = matrix[j][i]; return ret; } void show(int w = 10) const { #ifdef DEBUG REP(i,N){ cerr << (i==0 ? "⎛" : (i==N-1 ? "⎝" : "⎜")); REP(j,N) cerr << setw(w) << matrix[i][j] << " "; cerr << (i==0 ? "⎞" : (i==N-1 ? "⎠" : "⎟")); cerr << endl; } #endif } }; template <typename T> SquareMatrix<T> operator+(const SquareMatrix<T> &a, const SquareMatrix<T> &b){auto ret = a; ret += b; return ret;} template <typename T> SquareMatrix<T> operator-(const SquareMatrix<T> &a, const SquareMatrix<T> &b){auto ret = a; ret -= b; return ret;} template <typename T> SquareMatrix<T> operator*(const SquareMatrix<T> &a, const SquareMatrix<T> &b){auto ret = a; ret *= b; return ret;} template <typename T> SquareMatrix<T> power(SquareMatrix<T> a, uint64_t p){ int N = a.size(); if(p == 0) return SquareMatrix<T>::make_unit(N); if(p == 1) return a; SquareMatrix<T> temp = power(a, p/2); auto ret = temp * temp; if(p%2) ret *= a; return ret; } template <typename T> vector<T> operator*(const SquareMatrix<T> &a, const vector<T> &b){ vector<T> ret(a.size()); REP(i,a.size()){ REP(j,a.size()){ ret[i] += a[i][j] * b[j]; } } return ret; } template <typename T> vector<T> operator*(const vector<T> &b, const SquareMatrix<T> &a){ vector<T> ret(a.size()); REP(i,a.size()){ REP(j,a.size()){ ret[j] += b[i] * a[i][j]; } } return ret; } template <typename T> bool inverse_matrix(SquareMatrix<T> m, SquareMatrix<T> &ret){ int N = m.size(); ret = SquareMatrix<T>::make_unit(N); REP(i,N){ int p = i; FOR(j,i,N){ if(m[i][j] != 0){ p = j; break; } } swap(m[i], m[p]); swap(ret[i], ret[p]); { T d = m[i][i]; if(d == 0) return false; REP(j,N){ m[i][j] /= d; ret[i][j] /= d; } } REP(j,N){ if(i==j) continue; T d = m[j][i] / m[i][i]; REP(k,N){ m[j][k] -= m[i][k] * d; ret[j][k] -= ret[i][k] * d; } } } return true; } const LLI mod = 1e9+7; using mint = ModInt<mod>; using M = SquareMatrix<mint>; pair<mint,mint> solve1(int N, LLI K, vector<int> a){ M m(N); REP(i,N) m[0][i] = 1; REP(i,N-1) m[i+1][i] = 1; auto m2 = power(m,K-N); reverse(ALL(a)); vector<mint> A(N); REP(i,N) A[i] = a[i]; auto b = m2 * A; mint f = b[0]; mint s = accumulate(ALL(a), 0); M c; auto t = M::make_unit(N)-m; inverse_matrix(t,c); auto temp = (M::make_unit(N)-power(m,K-N+1)) * c; temp -= M::make_unit(N); auto B = temp * A; s += B[0]; return {f,s}; } pair<mint,mint> solve2(int N, LLI K, vector<int> a){ vector<mint> v(K); mint temp = 0; REP(i,N){ temp += a[i]; v[i] = a[i]; } FOR(i,N,K){ v[i] = temp; temp += v[i]; temp -= v[i-N]; } mint f = v.back(); mint s = 0; for(auto &x : v) s += x; return {f,s}; } int main(){ LLI N,K; while(cin >> N >> K){ vector<int> a(N); cin >> a; pair<mint,mint> ans; if(K > 1000000) ans = solve1(N,K,a); else ans = solve2(N,K,a); cout << ans.fst << " " << ans.snd << endl; } return 0; }