結果

問題 No.741 AscNumber(Easy)
ユーザー hamrayhamray
提出日時 2019-09-11 17:23:54
言語 C++11
(gcc 13.3.0)
結果
AC  
実行時間 161 ms / 2,000 ms
コード長 6,210 bytes
コンパイル時間 1,475 ms
コンパイル使用メモリ 168,528 KB
実行使用メモリ 42,368 KB
最終ジャッジ日時 2024-07-02 16:48:05
合計ジャッジ時間 4,923 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 55
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define M_PI 3.14159265358979323846
using namespace std;
//conversion
//------------------------------------------
inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; }
template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); }
inline int readInt() { int x; scanf("%d", &x); return x; }
//typedef
//------------------------------------------
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<string> VS;
typedef pair<int, int> PII;
typedef pair<int, PII> TIII;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector<LL> VLL;
typedef vector<VLL> VVLL;
//container util
//------------------------------------------
#define ALL(a) (a).begin(),(a).end()
#define RALL(a) (a).rbegin(), (a).rend()
#define PB push_back
#define MP make_pair
#define SZ(a) int((a).size())
#define SQ(a) ((a)*(a))
#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)
#define EXIST(s,e) ((s).find(e)!=(s).end())
#define SORT(c) sort((c).begin(),(c).end())
//repetition
//------------------------------------------
#define FOR(i,s,n) for(int i=s;i<(int)n;++i)
#define REP(i,n) FOR(i,0,n)
#define MOD 1000000007
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
const double EPS = 1E-8;
#define chmin(x,y) x=min(x,y)
#define chmax(x,y) x=max(x,y)
const int INF = 100000000;
struct Edge {
int to, from;
ll cost;
Edge(int from, int to, ll cost): from(from), to(to), cost(cost) {}
};
struct UnionFind {
vector<int> data;
UnionFind(int size) : data(size, -1) { }
bool unionSet(int x, int y) {
x = root(x); y = root(y);
if (x != y) {
if (data[y] < data[x]) swap(x, y);
data[x] += data[y]; data[y] = x;
}
return x != y;
}
bool findSet(int x, int y) {
return root(x) == root(y);
}
int root(int x) {
return data[x] < 0 ? x : data[x] = root(data[x]);
}
int size(int x) {
return -data[root(x)];
}
};
typedef vector<vector<Edge>> AdjList;
AdjList graph;
bool comp(const Edge& e1, const Edge& e2) {
return e1.cost < e2.cost;
}
vector<int> split_naive(const string &s, char delim) {
vector<int> elems;
string item;
for (char ch: s) {
if (ch == delim) {
if (!item.empty())
elems.push_back(atoi(item.c_str()));
item.clear();
}
else {
item += ch;
}
}
if (!item.empty())
elems.push_back(atoi(item.c_str()));
return elems;
}
ll mod_pow(ll x, ll n, ll mod){
ll res = 1;
bool c = false;
while(n){
if(n&1) res = res * x;
if(res > mod){
c = true;
res %= mod;
}
x = x * x %mod;
n >>= 1;
}
if(c) return mod;
return res;
}
#define SIEVE_SIZE 10000+10
bool sieve[SIEVE_SIZE];
void make_sieve(){
for(int i=0; i<SIEVE_SIZE; ++i) sieve[i] = true;
sieve[0] = sieve[1] = false;
for(int i=2; i*i<SIEVE_SIZE; ++i) if(sieve[i]) for(int j=2; i*j<SIEVE_SIZE; ++j) sieve[i*j] = false;
}
bool isprime(ll n){
for(ll i=2; i*i<=n; ++i) if(n%i==0) return false;
return true;
}
template<typename T>
vector<T> gauss_jordan(const vector<vector<T>>& A, const vector<T>& b){
int n = A.size();
vector<vector<T>> B(n, vector<T>(n+1));
for(int i=0; i<n; ++i){
for(int j=0; j<n; ++j){
B[i][j] = A[i][j];
}
}
for(int i=0; i<n; ++i) B[i][n] = b[i];
for(int i=0; i<n; ++i){
int pivot = i;
for(int j=i; j<n; ++j){
if(abs(B[j][i]) > abs(B[pivot][i])) pivot = j;
}
swap(B[i], B[pivot]);
if(abs(B[i][i]) < EPS) return vector<T>(); //
for(int j=i+1; j<=n; ++j) B[i][j] /= B[i][i];
for(int j=0; j<n; ++j){
if(i != j){
for(int k=i+1; k<=n; ++k) B[j][k] -= B[i][j] * B[i][k];
}
}
}
vector<T> x(n);
for(int i=0; i<n; ++i) x[i] = B[i][n];
return x;
}
typedef complex<double> P;
namespace std {
bool operator < (const P& a, const P& b) {
return real(a) != real(b) ? real(a) < real(b) : imag(a) < imag(b);
}
}
double cross(const P& a, const P& b) {
return imag(conj(a)*b);
}
double dot(const P& a, const P& b) {
return real(conj(a)*b);
}
struct L : public vector<P> {
L(const P &a, const P &b) {
push_back(a); push_back(b);
}
};
struct C {
P p; double r;
C(const P &p, double r) : p(p), r(r) { }
};
int ccw(P a, P b, P c) {
b -= a; c -= a;
if (cross(b, c) > 0) return +1; // counter clockwise
if (cross(b, c) < 0) return -1; // clockwise
if (dot(b, c) < 0) return +2; // c--a--b on line
if (norm(b) < norm(c)) return -2; // a--b--c on line
return 0;
}
ll GCD(ll a, ll b){
if(a<b) swap(a,b);
if(b == 0) return a;
return GCD(b, a%b);
}
const int MAX = 510000;
long long fac[MAX], finv[MAX], inv[MAX];
//
void COMinit() {
fac[0] = fac[1] = 1;
finv[0] = finv[1] = 1;
inv[1] = 1;
for (int i = 2; i < MAX; i++){
fac[i] = fac[i - 1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;
finv[i] = finv[i - 1] * inv[i] % MOD;
}
}
//
long long COM(int n, int k){
if (n < k) return 0;
if (n < 0 || k < 0) return 0;
return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;
}
int dp[1000010][10];
int main() {
//cin.tie(0);
//ios::sync_with_stdio(false);
//cout << fixed << setprecision(10);
ll N; cin >> N;
for(int i=1; i<10; ++i) dp[1][i]=1;
for(int i=2; i<=N; ++i){
for(int j=0; j<10; ++j){
for(int k=j; k<=9; ++k){
dp[i][j] += dp[i-1][k];
dp[i][j] %= MOD;
}
}
}
ll ans = 0;
for(int i=0; i<10; ++i){
ans += dp[N][i];
ans %= MOD;
}
cout << ans+1 << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0