結果
| 問題 |
No.186 中華風 (Easy)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-11 20:13:58 |
| 言語 | Common Lisp (sbcl 2.5.0) |
| 結果 |
AC
|
| 実行時間 | 10 ms / 2,000 ms |
| コード長 | 6,563 bytes |
| コンパイル時間 | 1,483 ms |
| コンパイル使用メモリ | 34,432 KB |
| 実行使用メモリ | 22,528 KB |
| 最終ジャッジ日時 | 2024-07-19 18:35:05 |
| 合計ジャッジ時間 | 2,503 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 23 |
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 19 JUL 2024 06:35:02 PM): ; file: /home/judge/data/code/Main.lisp ; in: DEFUN %EXT-GCD/BIGNUM ; (* Q U) ; ; note: forced to do GENERIC-* (cost 30) ; unable to do inline fixnum arithmetic (cost 2) because: ; The first argument is a UNSIGNED-BYTE, not a FIXNUM. ; The second argument is a INTEGER, not a FIXNUM. ; The result is a (VALUES INTEGER &OPTIONAL), not a (VALUES FIXNUM ; &OPTIONAL). ; unable to do inline (signed-byte 64) arithmetic (cost 4) because: ; The first argument is a UNSIGNED-BYTE, not a (SIGNED-BYTE 64). ; The second argument is a INTEGER, not a (SIGNED-BYTE 64). ; The result is a (VALUES INTEGER &OPTIONAL), not a (VALUES ; (SIGNED-BYTE 64) ; &OPTIONAL). ; etc. ; (DECF X (* Q U)) ; --> THE SB-IMPL::XSUBTRACT BLOCK ; ==> ; (- SB-IMPL::B SB-IMPL::A) ; ; note: forced to do GENERIC-- (cost 10) ; unable to do inline fixnum arithmetic (cost 2) because: ; The first argument is a INTEGER, not a FIXNUM. ; The second argument is a INTEGER, not a FIXNUM. ; The result is a (VALUES INTEGER &OPTIONAL), not a (VALUES FIXNUM ; &OPTIONAL). ; unable to do inline (unsigned-byte 64) arithmetic (cost 4) because: ; The first argument is a INTEGER, not a (UNSIGNED-BYTE 64). ; The second argument is a INTEGER, not a (UNSIGNED-BYTE 64). ; The result is a (VALUES INTEGER &OPTIONAL), not a (VALUES ; (UNSIGNED-BYTE 64) ; &OPTIONAL). ; etc. ; (* Q V) ; ; note: forced to do GENERIC-* (cost 30) ; unable to do inline fixnum arithmetic (cost 2)
ソースコード
;; -*- coding: utf-8 -*-
(eval-when (:compile-toplevel :load-toplevel :execute)
(sb-int:defconstant-eqx OPT
#+swank '(optimize (speed 3) (safety 2))
#-swank '(optimize (speed 3) (safety 0) (debug 0))
#'equal)
#+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
#-swank (set-dispatch-macro-character
#\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy
;; BEGIN_INSERTED_CONTENTS
;;;
;;; Bignum arithmetic by Chinese remainder theorem
;;;
;; Extended Euclidean algorithm (Blankinship algorithm)
(declaim (ftype (function * (values integer integer &optional)) %ext-gcd/bignum))
(defun %ext-gcd/bignum (a b)
(declare (optimize (speed 3) (safety 0))
(unsigned-byte a b))
(let ((y 1)
(x 0)
(u 1)
(v 0))
(declare (integer y x u v))
(loop (when (zerop a)
(return (values x y)))
(let ((q (floor b a)))
(decf x (* q u))
(rotatef x u)
(decf y (* q v))
(rotatef y v)
(decf b (* q a))
(rotatef b a)))))
;; Reference: https://qiita.com/drken/items/ae02240cd1f8edfc86fd (Japanese)
(declaim (inline chinese-rem))
(defun chinese-rem (b1 mod1 b2 mod2)
"Solves x ≡ b1 mod m1, x ≡ b2 mod m2. The returned integer is in [0, LCM(m1,
m2)). Returns LCM(m1, m2) as the second value.
This function returns (VALUES NIL NIL) when the system is infeasible."
(declare (integer b1 b2)
((integer 1) mod1 mod2))
(multiple-value-bind (p q) (%ext-gcd/bignum mod1 mod2)
(let ((gcd (+ (* p mod1) (* q mod2))))
(declare (unsigned-byte gcd))
(unless (zerop (mod (- b2 b1) gcd))
;; b1 ≡ b2 mod gcd(m1, m2) must holds
(return-from chinese-rem (values nil nil)))
(let* ((lcm/mod1 (floor mod2 gcd))
(tmp (mod (* (floor (- b2 b1) gcd) p) lcm/mod1))
(lcm (* mod1 lcm/mod1)))
(values (mod (+ b1 (* mod1 tmp)) lcm) lcm)))))
(defun chinese-rem* (rems moduli)
"Solves x_i ≡ b_i mod m_i, i in {1, 2, ..., k}. The returned integers are in
[0, LCM(m_1, m_2, ..., m_k)). Returns LCM(m_1, m_2, ..., m_k} as the second
value.
This function returns (VALUES NIL NIL) when the system is infeasible.
REMS := vector of integers
MODULI := vector of positive integers"
(declare (vector rems moduli))
(let ((result 0)
(modulus 1))
(declare (unsigned-byte result modulus))
(dotimes (i (length rems))
;; Iteratively solves the system of two equations: x1 ≡ b1 mod m1 and x2
;; ≡ b2 mod m2, where RESULT = b1, MODULUS = m1, (AREF REMS I) = b2, and
;; (AREF MODULI I) = m2.
(let ((b2 (aref rems i))
(m2 (aref moduli i)))
(declare (integer b2)
((integer 1) m2))
(multiple-value-bind (p q) (%ext-gcd/bignum modulus m2)
(let ((gcd (+ (* p modulus) (* q m2))))
(declare (unsigned-byte gcd))
(unless (zerop (mod (- b2 result) gcd))
;; b1 ≡ b2 mod gcd(m1, m2) must holds
(return-from chinese-rem* (values nil nil)))
(let* ((lcm/m1 (floor m2 gcd))
(tmp (mod (* (floor (- b2 result) gcd) p) lcm/m1)))
(declare (unsigned-byte lcm/m1 tmp))
(setq result (+ result (* modulus tmp)))
(setq modulus (* modulus lcm/m1)))))))
(values result modulus)))
(defmacro dbg (&rest forms)
#+swank
(if (= (length forms) 1)
`(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
`(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
#-swank (declare (ignore forms)))
(defmacro define-int-types (&rest bits)
`(progn
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)
(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
(let ((*read-default-float-format* 'double-float))
(prog1 (princ obj stream) (terpri stream))))
(defconstant +mod+ 1000000007)
;;;
;;; Body
;;;
(defun main ()
(let ((res 0)
(modulus 1))
(dotimes (i 3)
(let ((x (read))
(y (read)))
(multiple-value-setq (res modulus)
(chinese-rem res modulus x y))
(unless res
(println -1)
(return-from main))))
(println (if (zerop res)
(+ res modulus)
res))))
#-swank (main)
;;;
;;; Test and benchmark
;;;
#+swank
(defun io-equal (in-string out-string &key (function #'main) (test #'equal))
"Passes IN-STRING to *STANDARD-INPUT*, executes FUNCTION, and returns true if
the string output to *STANDARD-OUTPUT* is equal to OUT-STRING."
(labels ((ensure-last-lf (s)
(if (eql (uiop:last-char s) #\Linefeed)
s
(uiop:strcat s uiop:+lf+))))
(funcall test
(ensure-last-lf out-string)
(with-output-to-string (out)
(let ((*standard-output* out))
(with-input-from-string (*standard-input* (ensure-last-lf in-string))
(funcall function)))))))
#+swank
(defun get-clipbrd ()
(with-output-to-string (out)
(run-program "C:/msys64/usr/bin/cat.exe" '("/dev/clipboard") :output out)))
#+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname))
#+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*))
#+swank
(defun run (&optional thing (out *standard-output*))
"THING := null | string | symbol | pathname
null: run #'MAIN using the text on clipboard as input.
string: run #'MAIN using the string as input.
symbol: alias of FIVEAM:RUN!.
pathname: run #'MAIN using the text file as input."
(let ((*standard-output* out))
(etypecase thing
(null
(with-input-from-string (*standard-input* (delete #\Return (get-clipbrd)))
(main)))
(string
(with-input-from-string (*standard-input* (delete #\Return thing))
(main)))
(symbol (5am:run! thing))
(pathname
(with-open-file (*standard-input* thing)
(main))))))
#+swank
(defun gen-dat ()
(uiop:with-output-file (out *dat-pathname* :if-exists :supersede)
(format out "")))
#+swank
(defun bench (&optional (out (make-broadcast-stream)))
(time (run *dat-pathname* out)))