結果
| 問題 |
No.925 紲星 Extra
|
| コンテスト | |
| ユーザー |
lumc_
|
| 提出日時 | 2019-09-15 05:37:38 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 12,719 bytes |
| コンパイル時間 | 2,254 ms |
| コンパイル使用メモリ | 160,908 KB |
| 実行使用メモリ | 112,484 KB |
| 最終ジャッジ日時 | 2024-09-15 05:37:27 |
| 合計ジャッジ時間 | 9,560 ms |
|
ジャッジサーバーID (参考情報) |
judge6 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 WA * 1 RE * 1 |
| other | WA * 17 RE * 2 |
ソースコード
#if 0
想定TLEにしたい
seg on seg + 二分探索
直接二分探索みたいなのが存在するのかどうか,というのが気になる
#endif
// includes {{{
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<tuple>
#include<cmath>
#include<random>
#include<cassert>
#include<bitset>
#include<cstdlib>
// #include<deque>
// #include<multiset>
// #include<cstring>
// #include<bits/stdc++.h>
// }}}
using namespace std;
using ll = long long;
#define DEBUG_OUT std::cerr
// #undef DEBUG
// #define DEBUG
// DEBUG {{{
#include <array>
#include <deque>
#include <iostream>
#include <list>
#include <queue>
#include <stack>
#include <tuple>
#include <valarray>
#include <vector>
template < int n, class... T >
typename std::enable_if< (n >= sizeof...(T)) >::type __output_tuple(
std::ostream &, std::tuple< T... > const &) {}
template < int n, class... T >
typename std::enable_if< (n < sizeof...(T)) >::type __output_tuple(
std::ostream &os, std::tuple< T... > const &t) {
os << (n == 0 ? "" : ", ") << std::get< n >(t);
__output_tuple< n + 1 >(os, t);
}
template < class... T >
std::ostream &operator<<(std::ostream &os, std::tuple< T... > const &t) {
os << "(";
__output_tuple< 0 >(os, t);
os << ")";
return os;
}
template < class T, class U >
std::ostream &operator<<(std::ostream &os, std::pair< T, U > const &p) {
os << "(" << p.first << ", " << p.second << ")";
return os;
}
template < class T >
std::ostream &operator<<(std::ostream &os, const std::stack< T > &a) {
os << "{";
for(auto tmp = a; tmp.size(); tmp.pop())
os << (a.size() == tmp.size() ? "" : ", ") << tmp.top();
os << "}";
return os;
}
template < class T, class Container, class Compare >
std::ostream &operator<<(std::ostream &os,
std::priority_queue< T, Container, Compare > a) {
os << "{ (top) ";
while(a.size()) os << a.top() << (a.size() == 1 ? "" : ", "), a.pop();
os << " }";
return os;
}
template < class T, class Container >
std::ostream &operator<<(std::ostream &os, std::queue< T, Container > a) {
os << "{ ";
while(a.size()) os << a.front() << (a.size() == 1 ? "" : ", "), a.pop();
os << " }";
return os;
}
#ifdef DEBUG
#if !defined(DEBUG_OUT)
#define DEBUG_OUT std::cerr
#endif
#define dump(...) \
[&]() { \
auto __debug_tap = std::make_tuple(__VA_ARGS__); \
DEBUG_OUT << "[" << __LINE__ << "] " << #__VA_ARGS__ << " = " << __debug_tap \
<< std::endl; \
}()
template < class T >
inline void dump2D(T &d, size_t sizey, size_t sizex) {
for(size_t i = 0; i < sizey; i++) {
DEBUG_OUT << "\t";
for(size_t j = 0; j < sizex; j++)
DEBUG_OUT << d[i][j] << (j + 1 == sizex ? "" : "\t");
DEBUG_OUT << std::endl;
}
}
template < class T >
inline void dump1D(T &d, size_t sizey) {
for(size_t i = 0; i < sizey; i++) {
DEBUG_OUT << d[i] << (i + 1 == sizey ? "" : " ");
}
DEBUG_OUT << std::endl;
}
template <
class T, class = typename std::iterator_traits< decltype(begin(T())) >::value_type,
class = typename std::enable_if< !std::is_same< T, std::string >::value >::type >
std::ostream &operator<<(std::ostream &os, const T &a) {
os << "{";
for(auto ite = begin(a); ite != end(a); ++ite)
os << (ite == begin(a) ? "" : ", ") << *ite;
os << "}";
return os;
}
#else
#define dump(...) ((void) 42)
#define dump2D(...) ((void) 42)
#define dump1D(...) ((void) 42)
template <
class T, class = typename std::iterator_traits< decltype(begin(T())) >::value_type,
class = typename std::enable_if< !std::is_same< T, std::string >::value >::type >
std::ostream &operator<<(std::ostream &os, const T &a) {
for(auto ite = begin(a); ite != end(a); ++ite)
os << (ite == begin(a) ? "" : " ") << *ite;
return os;
}
#endif
// }}}
// .add(i, v) : bit[i] += v
// .get(i) : bit[i]
// .sum(i) : bit[0] + ... + bit[i]
// .range(l, r) : bit[l] + ... + bit[r]
// .lower_bound(T v) : min i that satisfies .sum(i) >= v
// - use only when bit[i] >= 0 for all i > 0
/// --- Binary Indexed Tree {{{ ///
#include <cassert>
#include <vector>
template < class T = long long >
struct BinaryIndexedTree {
using size_type = std::size_t;
size_type n, m;
T identity;
std::vector< T > data;
BinaryIndexedTree() : n(0) {}
BinaryIndexedTree(size_type n, T identity = T())
: n(n), identity(identity), data(n, identity) {
m = 1;
while(m < n) m <<= 1;
}
void add(size_type i, T x) {
assert(i < n);
i++;
while(i <= n) {
data[i - 1] = data[i - 1] + x;
i += i & -i;
}
}
T sum(int i) {
if(i < 0) return identity;
if(i >= static_cast<int>(n)) i = n - 1;
i++;
T s = identity;
while(i > 0) {
s = s + data[i - 1];
i -= i & -i;
}
return s;
}
T get(int i) { return sum(i) - sum(i - 1); }
T range(int a, int b) { return sum(b) - sum(a - 1); }
size_type lower_bound(T w) {
size_type i = 0;
for(size_type k = m; k > 0; k >>= 1) {
if(i + k <= n && data[i + k - 1] < w) w -= data[(i += k) - 1];
}
return i;
}
};
/// }}}--- ///
template < class T = long long >
using BIT = BinaryIndexedTree< T >;
// FractionalCascadingSegmentTree
// < Under, Data [, yCompress = 1 [, Index] ] >(H, ...)
// .index(y, x)
// === init(doUnique) ===
// .set(y, x, val) // index(y, x) must be done
// .fold(yl, yr, xl, xr)
// .fold(y, x)
// === --- ===
// only offline
/// --- Fractional Cascading SegmentTree {{{ ///
#include <algorithm>
#include <cassert>
#include <functional>
#include <map>
#include <vector>
template < class T, class U, bool yCompress = true, class Index = ll >
struct FractionalCascadingSegmentTree {
size_t h;
vector< T > dat;
vector< vector< Index > > indices;
vector< vector< size_t > > L, R;
U identity;
function< void(T &, int x, const U &) > setX;
function< void(T &, vector< Index > &) > initX;
function< U(T &, int x1, int x2) > foldX;
function< U(const U &, const U &) > mergeY;
FractionalCascadingSegmentTree() {}
FractionalCascadingSegmentTree(size_t tempH, //
const function< void(T &, int, const U &) > &setX,
const function< void(T &, vector< Index > &) > &initX,
const function< U(T &, int, int) > &foldX,
const function< U(const U &, const U &) > &mergeY,
U identity = U(), T initial = T())
: identity(identity), setX(setX), initX(initX), foldX(foldX), mergeY(mergeY) {
h = 1;
while(h < tempH) h <<= 1;
dat = vector< T >(2 * h, initial);
indices = vector< vector< Index > >(2 * h);
L = R = vector< vector< size_t > >(2 * h);
}
vector< Index > ys;
map< Index, int > ymap;
vector< pair< Index, Index > > pre_indecies;
void index(Index i, Index j) {
if(yCompress) {
ys.push_back(i);
pre_indecies.emplace_back(i, j);
} else {
size_t i2 = i;
assert(i2 < h);
indices[i2 + h].push_back(j);
}
}
void init(bool doUnique) {
if(yCompress) {
sort(begin(ys), end(ys));
ys.erase(unique(begin(ys), end(ys)), end(ys));
{
size_t i = 0;
for(Index &y : ys) ymap[y] = i++;
}
for(pair< Index, Index > idx : pre_indecies) {
indices[ymap[idx.first] + h].push_back(idx.second);
}
}
for(size_t i = h; i < h * 2; i++) {
sort(begin(indices[i]), end(indices[i]));
if(doUnique)
indices[i].erase(unique(begin(indices[i]), end(indices[i])), end(indices[i]));
initX(dat[i], indices[i]);
}
for(size_t i = h - 1; i >= 1; i--) {
size_t lsz = indices[i * 2].size();
size_t rsz = indices[i * 2 + 1].size();
size_t nsz = lsz + rsz;
indices[i].resize(nsz);
L[i].resize(nsz + 1, lsz);
R[i].resize(nsz + 1, rsz);
size_t p1 = 0, p2 = 0;
while(p1 < lsz || p2 < rsz) {
L[i][p1 + p2] = p1;
R[i][p1 + p2] = p2;
if(p1 < lsz && (p2 == rsz || indices[i * 2][p1] <= indices[i * 2 + 1][p2])) {
indices[i][p1 + p2] = indices[i * 2][p1];
p1++;
} else {
indices[i][p1 + p2] = indices[i * 2 + 1][p2];
p2++;
}
}
initX(dat[i], indices[i]);
}
}
public:
void set(Index y, Index x, const U &val) {
if(yCompress) {
assert(ymap.count(y));
_set(ymap[y], x, val);
} else {
size_t y2 = y;
assert(y2 < h);
_set(y2, x, val);
}
}
private:
void _set(size_t y, Index x, const U &val) {
size_t lower = lower_bound(begin(indices[1]), end(indices[1]), x) - begin(indices[1]);
assert(lower < indices.size());
size_t k = 1, l = 0, r = h;
while(k != y + h) {
setX(dat[k], lower, val);
size_t mid = (l + r) >> 1;
if(y < mid) {
lower = L[k][lower];
k = k * 2;
r = mid;
} else {
lower = R[k][lower];
k = k * 2 + 1;
l = mid;
}
}
setX(dat[k], lower, val);
assert(indices[k][lower] == x);
}
public:
U fold(Index y, Index x) { return fold(y, y + Index(1), x, x + Index(1)); }
U fold(Index a, Index b, Index l, Index r) {
if(a >= b || l >= r) return identity;
size_t lower = lower_bound(begin(indices[1]), end(indices[1]), l) - begin(indices[1]);
size_t upper = lower_bound(begin(indices[1]), end(indices[1]), r) - begin(indices[1]);
size_t a2, b2;
if(yCompress) {
a2 = lower_bound(begin(ys), end(ys), a) - begin(ys);
b2 = lower_bound(begin(ys), end(ys), b) - begin(ys);
} else {
a2 = a, b2 = b;
assert(a2 < h && b2 <= h);
}
return fold(a2, b2, lower, upper, 0, h, 1);
}
private:
U fold(size_t a, size_t b, size_t lower, size_t upper, size_t l, size_t r, size_t k) {
if(lower == upper) return identity;
if(b <= l || r <= a) return identity;
if(a <= l && r <= b) return foldX(dat[k], lower, upper);
return mergeY(fold(a, b, L[k][lower], L[k][upper], l, (l + r) >> 1, k * 2),
fold(a, b, R[k][lower], R[k][upper], (l + r) >> 1, r, k * 2 + 1));
}
};
/// }}}--- ///
constexpr int N = 4e5;
constexpr int Q = 4e5;
using Under = pair<BIT<>, BIT<int>>;
using Value = ll;
using Data = pair<ll, int>;
constexpr int inf = 1e9;
int n, q;
int t[Q], l[Q], r[Q];
int med[Q], smaller[Q], bigger[Q];
int main() {
std::ios::sync_with_stdio(false), std::cin.tie(0);
cin >> n >> q;
FractionalCascadingSegmentTree< Under, Data, 1 > ecas(
n + q + 1,
// set x
[](Under &dat, int x, const Data &val) -> void {
// dat.add(x, -dat.get(x) + val);
dat.first.add(x, val.first);
dat.second.add(x, val.second);
},
// init x
[](Under &dat, const vector< ll > &indices) -> void {
dat = Under(BIT<>(indices.size()), BIT<int>(indices.size())); // serve initial?
},
// fold [l, r) // l < r
[](Under &dat, int l, int r) -> Data { return Data(dat.first.range(l, r - 1), dat.second.range(l, r - 1)); },
// merge y-direction
[](Data a, Data b) -> Data { return Data(a.first + b.first, a.second + b.second); }
// optional identity
// , identity
);
vector<int> v(n);
for(auto &e: v) cin >> e;
for(int i = 0; i < q; i++) cin >> t[i] >> l[i] >> r[i], l[i]--;
for(int i = 0; i < n; i++) ecas.index(v[i], i);
auto w = v;
for(int i = 0; i < q; i++) {
if(t[i] == 1) { // update
ecas.index(r[i], l[i]);
} else { // query
}
}
dump(3);
ecas.init(1);
dump(4);
for(int i = 0; i < n; i++) ecas.set(v[i], i, Data(v[i], 1));
dump(5);
for(int i = 0; i < q; i++) {
if(t[i] == 1) { // update
ecas.set(v[l[i]], l[i], Data(-v[l[i]], -1));
ecas.set(r[i], l[i], Data(r[i], 1));
v[l[i]] = r[i];
} else { // query
int len = r[i] - l[i];
int ok = inf, ng = -inf-1;
while(abs(ok - ng) > 1) {
int mid = (ok + ng) / 2;
auto f1 = ecas.fold(mid + 1, inf, l[i], r[i]);
if(f1.second <= len / 2) ok = mid; else ng = mid;
}
med[i] = ok;
smaller[i] = ecas.fold(-inf, med[i], l[i], r[i]).second;
bigger[i] = ecas.fold(med[i] + 1, inf, l[i], r[i]).second;
ll z = -ecas.fold(-inf, med[i], l[i], r[i]).first + ecas.fold(med[i] + 1, inf, l[i], r[i]).first;
z -= ll(len / 2 - smaller[i]) * med[i];
z += ll((len - len / 2) - bigger[i]) * med[i];
if(len % 2 == 0) {
} else {
z -= med[i];
}
cout << z << "\n";
}
}
return 0;
}
lumc_