結果

問題 No.925 紲星 Extra
ユーザー lumc_lumc_
提出日時 2019-09-15 10:23:26
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 39,844 bytes
コンパイル時間 3,658 ms
コンパイル使用メモリ 198,176 KB
実行使用メモリ 110,500 KB
最終ジャッジ日時 2023-10-13 08:28:51
合計ジャッジ時間 13,129 ms
ジャッジサーバーID
(参考情報)
judge12 / judge15
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 RE -
testcase_07 RE -
testcase_08 RE -
testcase_09 RE -
testcase_10 RE -
testcase_11 RE -
testcase_12 RE -
testcase_13 RE -
testcase_14 RE -
testcase_15 RE -
testcase_16 RE -
testcase_17 RE -
testcase_18 RE -
testcase_19 RE -
testcase_20 RE -
testcase_21 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

// includes {{{
#include<iostream>
#include<iomanip>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<tuple>
#include<cmath>
#include<random>
#include<cassert>
#include<bitset>
#include<cstdlib>
// #include<deque>
// #include<multiset>
// #include<cstring>
// #include<bits/stdc++.h>
// }}}
using namespace std;
using ll = long long;

#define DEBUG_OUT std::cerr

// #undef DEBUG
// #define DEBUG
// DEBUG {{{
#include <array>
#include <deque>
#include <iostream>
#include <list>
#include <queue>
#include <stack>
#include <tuple>
#include <valarray>
#include <vector>
template < int n, class... T >
typename std::enable_if< (n >= sizeof...(T)) >::type __output_tuple(
    std::ostream &, std::tuple< T... > const &) {}
template < int n, class... T >
typename std::enable_if< (n < sizeof...(T)) >::type __output_tuple(
    std::ostream &os, std::tuple< T... > const &t) {
  os << (n == 0 ? "" : ", ") << std::get< n >(t);
  __output_tuple< n + 1 >(os, t);
}
template < class... T >
std::ostream &operator<<(std::ostream &os, std::tuple< T... > const &t) {
  os << "(";
  __output_tuple< 0 >(os, t);
  os << ")";
  return os;
}
template < class T, class U >
std::ostream &operator<<(std::ostream &os, std::pair< T, U > const &p) {
  os << "(" << p.first << ", " << p.second << ")";
  return os;
}
template < class T >
std::ostream &operator<<(std::ostream &os, const std::stack< T > &a) {
  os << "{";
  for(auto tmp = a; tmp.size(); tmp.pop())
    os << (a.size() == tmp.size() ? "" : ", ") << tmp.top();
  os << "}";
  return os;
}
template < class T, class Container, class Compare >
std::ostream &operator<<(std::ostream &os,
    std::priority_queue< T, Container, Compare > a) {
  os << "{ (top) ";
  while(a.size()) os << a.top() << (a.size() == 1 ? "" : ", "), a.pop();
  os << " }";
  return os;
}
template < class T, class Container >
std::ostream &operator<<(std::ostream &os, std::queue< T, Container > a) {
  os << "{ ";
  while(a.size()) os << a.front() << (a.size() == 1 ? "" : ", "), a.pop();
  os << " }";
  return os;
}
#ifdef DEBUG
#if !defined(DEBUG_OUT)
#define DEBUG_OUT std::cerr
#endif
#define dump(...)                                                                \
  [&]() {                                                                        \
    auto __debug_tap = std::make_tuple(__VA_ARGS__);                             \
    DEBUG_OUT << "[" << __LINE__ << "] " << #__VA_ARGS__ << " = " << __debug_tap \
    << std::endl;                                                      \
  }()
template < class T >
inline void dump2D(T &d, size_t sizey, size_t sizex) {
  for(size_t i = 0; i < sizey; i++) {
    DEBUG_OUT << "\t";
    for(size_t j = 0; j < sizex; j++)
      DEBUG_OUT << d[i][j] << (j + 1 == sizex ? "" : "\t");
    DEBUG_OUT << std::endl;
  }
}
template < class T >
inline void dump1D(T &d, size_t sizey) {
  for(size_t i = 0; i < sizey; i++) {
    DEBUG_OUT << d[i] << (i + 1 == sizey ? "" : " ");
  }
  DEBUG_OUT << std::endl;
}
template <
class T, class = typename std::iterator_traits< decltype(begin(T())) >::value_type,
      class = typename std::enable_if< !std::is_same< T, std::string >::value >::type >
      std::ostream &operator<<(std::ostream &os, const T &a) {
        os << "{";
        for(auto ite = begin(a); ite != end(a); ++ite)
          os << (ite == begin(a) ? "" : ", ") << *ite;
        os << "}";
        return os;
      }
#else
#define dump(...) ((void) 42)
#define dump2D(...) ((void) 42)
#define dump1D(...) ((void) 42)
template <
class T, class = typename std::iterator_traits< decltype(begin(T())) >::value_type,
      class = typename std::enable_if< !std::is_same< T, std::string >::value >::type >
      std::ostream &operator<<(std::ostream &os, const T &a) {
        for(auto ite = begin(a); ite != end(a); ++ite)
          os << (ite == begin(a) ? "" : " ") << *ite;
        return os;
      }
#endif
// }}}

/// --- Monoid examples {{{ ///
constexpr long long inf_monoid = 1e18 + 100;
#include <algorithm>
struct Nothing {
  using T = char;
  using Monoid = Nothing;
  using M = T;
  static constexpr T op(const T &, const T &) { return T(); }
  static constexpr T identity() { return T(); }
  template < class X >
  static constexpr X actInto(const M &, long long, const X &x) {
    return x;
  }
};

template < class U = long long >
struct RangeMin {
  using T = U;
  static T op(const T &a, const T &b) { return std::min< T >(a, b); }
  static constexpr T identity() { return T(inf_monoid); }
};

template < class U = long long >
struct RangeMax {
  using T = U;
  static T op(const T &a, const T &b) { return std::max< T >(a, b); }
  static constexpr T identity() { return T(-inf_monoid); }
};

template < class U = long long >
struct RangeSum {
  using T = U;
  static T op(const T &a, const T &b) { return a + b; }
  static constexpr T identity() { return T(0); }
};

template < class U >
struct RangeProd {
  using T = U;
  static T op(const T &a, const T &b) { return a * b; }
  static constexpr T identity() { return T(1); }
};

template < class U = long long >
struct RangeOr {
  using T = U;
  static T op(const T &a, const T &b) { return a | b; }
  static constexpr T identity() { return T(0); }
};

#include <bitset>

template < class U = long long >
struct RangeAnd {
  using T = U;
  static T op(const T &a, const T &b) { return a & b; }
  static constexpr T identity() { return T(-1); }
};

template < size_t N >
struct RangeAnd< std::bitset< N > > {
  using T = std::bitset< N >;
  static T op(const T &a, const T &b) { return a & b; }
  static constexpr T identity() { return std::bitset< N >().set(); }
};

/// }}}--- ///

/// --- M_act examples {{{ ///
template < class U = long long, class V = U >
struct RangeMinAdd {
  using X = U;
  using M = V;
  using Monoid = RangeMin< U >;
  static M op(const M &a, const M &b) { return a + b; }
  static constexpr M identity() { return 0; }
  static X actInto(const M &m, long long, const X &x) { return m + x; }
};

template < class U = long long, class V = U >
struct RangeMaxAdd {
  using X = U;
  using M = V;
  using Monoid = RangeMax< U >;
  static M op(const M &a, const M &b) { return a + b; }
  static constexpr M identity() { return 0; }
  static X actInto(const M &m, long long, const X &x) { return m + x; }
};

template < class U = long long, class V = U >
struct RangeMinSet {
  using M = U;
  using Monoid = RangeMin< U >;
  using X = typename Monoid::T;
  static M op(const M &a, const M &b) { return a == identity() ? b : a; }
  static constexpr M identity() { return M(-inf_monoid); }
  static X actInto(const M &m, long long, const X &x) { return m == identity() ? x : m; }
};

template < class U = long long, class V = U >
struct RangeMaxSet {
  using M = U;
  using Monoid = RangeMax< U >;
  using X = typename Monoid::T;
  static M op(const M &a, const M &b) { return a == identity() ? b : a; }
  static constexpr M identity() { return M(-inf_monoid); }
  static X actInto(const M &m, long long, const X &x) { return m == identity() ? x : m; }
};

template < class U = long long, class V = U >
struct RangeSumAdd {
  using X = U;
  using M = V;
  using Monoid = RangeSum< U >;
  static M op(const M &a, const M &b) { return a + b; }
  static constexpr M identity() { return 0; }
  static X actInto(const M &m, long long n, const X &x) { return m * n + x; }
};

template < class U = long long, class V = U >
struct RangeSumSet {
  using X = U;
  using M = V;
  using Monoid = RangeSum< U >;
  static M op(const M &a, const M &b) { return a == identity() ? a : b; }
  static constexpr M identity() { return M(-inf_monoid); }
  static X actInto(const M &m, long long n, const X &x) {
    return m == identity() ? x : m * n;
  }
};

template < class U, class V = U >
struct RangeProdMul {
  using X = U;
  using M = V;
  using Monoid = RangeProd< U >;
  static M mpow(M a, long long b) {
    X r(1);
    while(b) {
      if(b & 1) r = r * a;
      a = a * a;
      b >>= 1;
    }
    return r;
  }
  static M op(const M &a, const M &b) { return a * b; }
  static constexpr M identity() { return M(1); }
  static X actInto(const M &m, long long n, const X &x) { return x * mpow(m, n); }
};

template < class U, class V = U >
struct RangeProdSet {
  using X = U;
  using M = V;
  using Monoid = RangeProd< U >;
  static M op(const M &a, const M &b) { return a == identity() ? b : a; }
  static constexpr M identity() { return V::unused; }
  static X actInto(const M &m, long long n, const X &) {
    if(m == identity()) return;
    return RangeProdMul< U, V >::mpow(m, n);
  }
};

template < class U = long long, class V = U >
struct RangeOrSet {
  using X = U;
  using M = V;
  using Monoid = RangeOr< U >;
  static M op(const M &a, const M &b) { return a == identity() ? b : a; }
  static constexpr M identity() { return M(-inf_monoid); }
  static X actInto(const M &m, long long, const X &x) { return m == identity() ? x : m; }
};

template < class U = long long, class V = U >
struct RangeAndSet {
  using X = U;
  using M = V;
  using Monoid = RangeAnd< U >;
  static M op(const M &a, const M &b) { return a == identity() ? b : a; }
  static constexpr M identity() { return M(-inf_monoid); }
  static X actInto(const M &m, long long, const X &x) { return m == identity() ? x : m; }
};

template < class U = long long, class V = U >
struct RangeOr2 {
  using X = U;
  using M = V;
  using Monoid = RangeOr< U >;
  static M op(const M &a, const M &b) { return a | b; }
  static constexpr M identity() { return M(0); }
  static X actInto(const M &m, long long, const X &x) { return m | x; }
};

template < class U = long long, class V = U >
struct RangeAnd2 {
  using X = U;
  using M = V;
  using Monoid = RangeAnd< U >;
  static M op(const M &a, const M &b) { return a & b; }
  static constexpr M identity() { return M(-1); }
  static X actInto(const M &m, long long, const X &x) { return m & x; }
};

template < class U, size_t N >
struct RangeAnd2< U, std::bitset< N > > {
  using X = U;
  using M = std::bitset< N >;
  using Monoid = RangeAnd< U >;
  static M op(const M &a, const M &b) { return a & b; }
  static constexpr M identity() { return std::bitset< N >().set(); }
  static X actInto(const M &m, long long, const X &x) { return m & x; }
};
/// }}}--- ///

#include <cassert>
#include <cstddef>
#include <functional>
#include <tuple>
#include <utility>
#include <vector>
namespace wbt {

// WeightBalancedTreeNode {{{

template < class Key, class M_act >
struct WeightBalancedTreeNode {
  using size_type = std::size_t;
  using node_type = WeightBalancedTreeNode;
  using pointer = WeightBalancedTreeNode *;
  using const_pointer = const WeightBalancedTreeNode *;

  using Monoid = typename M_act::Monoid;
  using T = typename Monoid::T;
  using M = typename M_act::M;

  size_type sz;
  Key key;
  T value = Monoid::identity(), accum = Monoid::identity();
  pointer l, r;

  size_type weight() const { return sz + 1; }

  bool bounded_balanced() const {
    if(this == get_NIL()) return 1;
    return is_balanced(l, r) && is_balanced(r, l) && l->bounded_balanced() &&
           r->bounded_balanced();
  }

  static long long sq(long long a) { return a * a; };

  static bool is_balanced(const_pointer a, const_pointer b) {
    // return delta * a->weight() >= b->weight();
    // delta = 3

    return 3 * a->weight() >= b->weight();
  }

  static bool is_single(const_pointer a, const_pointer b) {
    // return a->weight() < gamma * b->weight();
    // gamma = 2

    return a->weight() < 2 * b->weight();
  }

  static std::pair< T, bool > lookup(const_pointer p, Key key) {
    const_pointer t = p;
    while(t != get_NIL()) {
      if(key < t->key) {
        t = t->l;
      } else if(t->key < key) {
        t = t->r;
      } else {
        return std::pair< T, bool >(t->value, 1);
      }
    }
    return std::pair< T, bool >();
  }

  static pointer copy(const_pointer a) {
    if(a == get_NIL()) return get_NIL();
    return make(a->key, a->value, a->accum, copy(a->l), copy(a->r));
  }

  static size_type count(const_pointer p, const Key &keyL, const Key &keyR,
                         bool include_left, bool include_right) {
    const_pointer t = p;
    while(t != get_NIL()) {
      if(!(keyL < t->key)) {
        // key <= keyL
        if(include_left && !(t->key < keyL))
          return 1 + count_lesser(t->r, keyR, include_right);
        t = t->r;
      } else if(!(t->key < keyR)) {
        // keyR <= key
        if(include_right && !(keyR < t->key))
          return 1 + count_greater(t->l, keyL, include_left);
        t = t->l;
      } else {
        // keyL < key < keyR
        return count_greater(t->l, keyL, include_left) + 1 +
               count_lesser(t->r, keyR, include_right);
      }
    }
    return 0;
  }

  static size_type count_lesser(const_pointer p, const Key &keyR, bool include_bound) {
    size_type res = 0;
    const_pointer t = p;
    while(t != get_NIL()) {
      if(t->key < keyR) {
        res += t->l->sz + 1;
        t = t->r;
      } else {
        // keyR <= key
        if(include_bound && !(keyR < t->key)) return res + t->l->sz + 1;
        t = t->l;
      }
    }
    return res;
  }

  static size_type count_greater(const_pointer p, const Key &keyL, bool include_bound) {
    size_type res = 0;
    const_pointer t = p;
    while(t != get_NIL()) {
      if(keyL < t->key) {
        res += t->r->sz + 1;
        t = t->l;
      } else {
        // key <= keyL
        if(include_bound && !(t->key < keyL)) return res + t->r->sz + 1;
        t = t->r;
      }
    }
    return res;
  }

  static pointer insert(pointer p, Key key, const T &value, bool weak_update) {
    if(p == get_NIL()) return make_singleton(key, value);
    std::vector< std::pair< pointer, bool > > pts;
    pointer t = p;
    while(t != get_NIL()) {
      if(key < t->key) {
        pts.emplace_back(t, 1);
        t = t->l;
      } else if(t->key < key) {
        pts.emplace_back(t, 0);
        t = t->r;
      } else {
        return p;
      }
    }

    pointer q;
    bool is_left;
    std::tie(q, is_left) = pts.back();
    (is_left ? q->l : q->r) = make_singleton(key, value);

    while(pts.size()) {
      std::tie(q, is_left) = pts.back();
      pts.pop_back();
      update(q, weak_update);
      if(is_left) {
        balanceR(q);
      } else {
        balanceL(q);
      }
    }
    return p;
  }

  static pointer erase(pointer p, Key key) {
    std::vector< std::pair< pointer, bool > > pts;
    pointer t = p;
    while(t != get_NIL()) {
      if(key < t->key) {
        pts.emplace_back(t, 1);
        t = t->l;
      } else if(t->key < key) {
        pts.emplace_back(t, 0);
        t = t->r;
      } else {
        pointer s = glue(t->l, t->r);
        delete t;

        if(pts.empty()) return s;

        pointer q;
        bool is_left;
        std::tie(q, is_left) = pts.back();
        (is_left ? q->l : q->r) = s;

        while(pts.size()) {
          std::tie(q, is_left) = pts.back();
          pts.pop_back();
          update(q);
          if(is_left) {
            balanceL(q);
          } else {
            balanceR(q);
          }
        }
        break;
      }
    }
    return p;
  }

  Key select(size_type k) const {
    assert(this != get_NIL());
    if(l->sz) return l->select(k);
    k -= l->sz;
    if(k == 0) return key;
    return r->select(k);
  }

  static pointer balance(Key k, T v, pointer l, pointer r) {
    if(is_balanced(l, r) && is_balanced(r, l)) return make(k, v, l, r);
    if(l->sz > r->sz) return rotateR(k, v, l, r);
    return rotateL(k, v, l, r);
  }

  static pointer glue(pointer l, pointer r) {
    if(l == get_NIL()) return r;
    if(r == get_NIL()) return l;
    if(l->sz > r->sz) {
      pointer l2, p;
      std::tie(l2, p) = delete_find_max(l);
      p->l = l2;
      p->r = r;
      update(p);
      balanceL(p);
      return p;
    } else {
      pointer r2, p;
      std::tie(r2, p) = delete_find_min(r);
      p->l = l;
      p->r = r2;
      update(p);
      balanceR(p);
      return p;
    }
  }

  // BST basic operations {{{
  static pointer merge(pointer l, Key k, T v, pointer r) {
    if(l == get_NIL()) return insert(r, k, v, 0); // TODO : optimize
    if(r == get_NIL()) return insert(l, k, v, 0); // TODO : optimize
    bool bal1 = is_balanced(l, r);
    bool bal2 = is_balanced(r, l);
    if(bal1 && bal2) {
      return make(k, v, l, r);
    } else if(bal1) {
      l->r = merge(l->r, k, v, r);
      balanceL(l);
      return l;
    } else {
      r->l = merge(l, k, v, r->l);
      balanceR(r);
      return r;
    }
  }
  static std::tuple< pointer, bool, pointer > split(pointer a, Key k, bool right) {
    if(a == get_NIL())
      return std::tuple< pointer, bool, pointer >(get_NIL(), 0, get_NIL());
    pointer l2, r2;
    bool erased;
    if(k < a->key) {
      std::tie(l2, erased, r2) = split(a->l, k, right);
      auto res = std::tuple< pointer, bool, pointer >(
          l2, erased, merge(r2, a->key, a->value, a->r));
      delete a;
      return res;
      // TODO : make it faster
    } else if(a->key < k) {
      std::tie(l2, erased, r2) = split(a->r, k, right);
      auto res = std::tuple< pointer, bool, pointer >(
          merge(a->l, a->key, a->value, l2), erased, r2);
      delete a;
      return res;
      // TODO : make it faster
    }
    auto res = std::tuple< pointer, bool, pointer >(
        !right ? insert(a->l, a->key, a->value, 0) : a->l, 1,
        right ? insert(a->r, a->key, a->value, 0) : a->r);
    delete a;
    return res;
  }
  // }}}

  // set operations {{{
  static pointer unionL(pointer t1, pointer t2) {
    if(t1 == get_NIL()) return t2;
    if(t2 == get_NIL()) return t1;
    pointer t_lesser, t_greater;
    std::tie(t_lesser, std::ignore, t_greater) = split(t2, t1->key, 0);
    pointer q =
        merge(unionL(t1->l, t_lesser), t1->key, t1->value, unionL(t1->r, t_greater));
    delete t1;
    return q;
  }
  // }}}

  using PP = std::tuple< pointer, pointer >;
  static PP delete_find_max(pointer p) {
    assert(p != get_NIL());
    if(p->r == get_NIL()) {
      pointer q = p->l;
      p->l = get_NIL();
      p->sz = 1;
      return PP(q, p);
    }
    pointer t = p;
    while(1) {
      if(t->r->r == get_NIL()) {
        pointer q = t->r;
        t->r = q->l;
        q->l = get_NIL();
        --t->sz;
        q->sz = 1;
        return PP(p, q);
      } else {
        --t->sz;
        t = t->r;
      }
    }
  }

  static PP delete_find_min(pointer p) {
    assert(p != get_NIL());
    if(p->l == get_NIL()) {
      pointer q = p->r;
      p->r = get_NIL();
      p->sz = 1;
      return PP(q, p);
    }
    pointer t = p;
    while(1) {
      if(t->l->l == get_NIL()) {
        pointer q = t->l;
        t->l = q->r;
        q->r = get_NIL();
        --t->sz;
        q->sz = 1;
        return PP(p, q);
      } else {
        --t->sz;
        t = t->l;
      }
    }
  }

  static void balanceL(pointer p) {
    if(is_balanced(p->l, p->r)) return;
    rotateL(p);
  }
  static void balanceR(pointer p) {
    if(is_balanced(p->r, p->l)) return;
    rotateR(p);
  }

  static void rotateL(pointer p) {
    const pointer rl = p->r->l, rr = p->r->r;
    if(is_single(rl, rr)) {
      singleL(p);
    } else {
      doubleL(p);
    }
  }
  static void rotateR(pointer p) {
    const pointer ll = p->l->l, lr = p->l->r;
    if(is_single(lr, ll)) {
      singleR(p);
    } else {
      doubleR(p);
    }
  }

  static void singleL(pointer p) {
    pointer q = p->r;
    assert(q != get_NIL());
    p->r = q->r;
    q->r = q->l;
    q->l = p->l;
    p->l = q;
    std::swap(p->key, q->key);
    std::swap(p->value, q->value);
    update(q);
    update(p);
  }
  static void singleR(pointer p) {
    pointer q = p->l;
    assert(q != get_NIL());
    p->l = q->l;
    q->l = q->r;
    q->r = p->r;
    p->r = q;
    std::swap(p->key, q->key);
    std::swap(p->value, q->value);
    update(q);
    update(p);
  }

  static void doubleL(pointer p) {
    pointer s = p->r->l;
    assert(s != get_NIL());
    p->r->l = s->r;
    s->r = s->l;
    s->l = p->l;
    p->l = s;
    std::swap(p->key, s->key);
    std::swap(p->value, s->value);
    update(p->l);
    update(p->r);
    update(p);
  }
  static void doubleR(pointer p) {
    pointer s = p->l->r;
    assert(s != get_NIL());
    p->l->r = s->l;
    s->l = s->r;
    s->r = p->r;
    p->r = s;
    std::swap(p->key, s->key);
    std::swap(p->value, s->value);
    update(p->l);
    update(p->r);
    update(p);
  }

  static pointer get_NIL() {
    static pointer NIL = make_NIL();
    return NIL;
  }

  static pointer make_NIL() {
    pointer p = new WeightBalancedTreeNode;
    p->sz = 0;
    p->value = Monoid::identity();
    p->l = p;
    p->r = p;
    return p;
  }

  static pointer make_singleton(Key key, const T &value) {
    pointer p = new WeightBalancedTreeNode;
    p->sz = 1;
    p->key = key;
    p->accum = p->value = value;
    p->l = get_NIL();
    p->r = get_NIL();
    return p;
  }

  static pointer make(Key key, const T &value, pointer l, pointer r) {
    pointer p = new WeightBalancedTreeNode;
    p->sz = l->sz + r->sz + 1;
    p->key = key;
    p->value = value;
    p->accum = Monoid::op(Monoid::op(l->accum, value), r->accum);
    p->l = l;
    p->r = r;
    return p;
  }

  static void update(pointer p, bool weak_update = 0) {
    p->sz = p->l->sz + p->r->sz + 1;
    if(!weak_update)
      p->accum = Monoid::op(Monoid::op(p->l->accum, p->value), p->r->accum);
  }

  static pointer make(Key key, const T &value, const T &accum, pointer l, pointer r) {
    pointer p = new WeightBalancedTreeNode;
    p->sz = l->sz + r->sz + 1;
    p->key = key;
    p->value = value;
    p->accum = accum;
    p->l = l;
    p->r = r;
    return p;
  }

  static std::pair< Key, T > get_min(const_pointer p) {
    assert(p != get_NIL());
    while(p->l != get_NIL()) p = p->l;
    return std::pair<Key, T>(p->key, p->value);
  }
  static std::pair< Key, T > get_max(const_pointer p) {
    assert(p != get_NIL());
    while(p->r != get_NIL()) p = p->r;
    return std::pair<Key, T>(p->key, p->value);
  }

  void get_all_dfs(std::vector< std::pair< Key, T > > &res) const {
    if(this == get_NIL()) return;
    l->get_all_dfs(res);
    res.emplace_back(key, value);
    r->get_all_dfs(res);
  }

  static void delete_all(pointer p) {
    if(p == get_NIL()) return;
    delete_all(p->l);
    delete_all(p->r);
    delete p;
  }

  using touch_func = std::function< void(Key key, T &v, T &accum, bool eq) >;

  static bool touch_path_to(pointer p, const Key &target, const touch_func &touch) {
    pointer t = p;
    std::vector<pointer> pts;
    while(t != get_NIL()) {
      if(target < t->key) {
        pts.push_back(t);
        t = t->l;
      } else if(t->key < target) {
        pts.push_back(t);
        t = t->r;
      } else {
        touch(t->key, t->value, t->accum, 1);
        while(pts.size()) {
          t = pts.back();
          pts.pop_back();
          touch(t->key, t->value, t->accum, 0);
        }
        return 1;
      }
    }
    return 0;
  }
};

// }}}

// WeightBalancedTree {{{

template < class Key, class M_act >
struct WeightBalancedTree {
  using size_type = std::size_t;
  using node_type = WeightBalancedTreeNode< Key, M_act >;
  using pointer = WeightBalancedTreeNode< Key, M_act > *;
  using const_pointer = const WeightBalancedTreeNode< Key, M_act > *;

  using Monoid = typename M_act::Monoid;
  using T = typename Monoid::T;
  using M = typename M_act::M;

  bool active = 1;
  pointer p = node_type::get_NIL();

  WeightBalancedTree() {}
  WeightBalancedTree(pointer p) : p(p) {}

  WeightBalancedTree(const WeightBalancedTree &wbt) { *this = wbt; }
  WeightBalancedTree(WeightBalancedTree &&wbt) { *this = std::move(wbt); }

  WeightBalancedTree &operator=(const WeightBalancedTree &wbt) {
    assert(wbt.active);
    if(active) node_type::delete_all(p);
    active = 1;
    p = node_type::copy(wbt.p);
    return *this;
  }
  WeightBalancedTree &operator=(WeightBalancedTree &&wbt) {
    assert(wbt.active);
    if(active) node_type::delete_all(p);
    active = 1;
    wbt.active = 0;
    p = wbt.p;
    return *this;
  }

  ~WeightBalancedTree() {
    if(active) {
      node_type::delete_all(p);
    }
  }

  void insert(Key key, const T &value) {
    assert(active);
    p = node_type::insert(p, key, value, 0);
  }
  void insert(Key key) {
    assert(active);
    p = node_type::insert(p, key, Monoid::identity(), 1);
  }
  bool erase(Key key) {
    assert(active);
    p = node_type::erase(p, key);

    // TODO
    return 1;
  }
  std::pair< T, bool > lookup(Key key) const {
    assert(active);
    return node_type::lookup(p, key);
  }
  T get(Key key) const {
    assert(active);
    return lookup(key).first;
  }
  size_type count(Key key) const {
    assert(active);
    return lookup(key).second;
  }

  void clear() {
    if(p == node_type::get_NIL()) {
      active = 1;
      return;
    }
    if(active) node_type::delete_all(p);
    active = 1;
    p = node_type::get_NIL();
  }

  std::vector< std::pair< Key, T > > get_all() const {
    assert(active);
    std::vector< std::pair< Key, T > > res;
    res.reserve(size());
    p->get_all_dfs(res);
    return res;
  }

  std::pair< Key, T > get_min() const {
    assert(active);
    return p->get_min();
  }
  std::pair< Key, T > get_max() const {
    assert(active);
    return p->get_max();
  }

  size_type count(Key l, Key r, bool include_left = 1, bool include_right = 0) const {
    assert(active);
    return node_type::count(p, l, r, include_left, include_right);
  }

  size_type count_lesser(Key key, bool include_bound) const {
    assert(active);
    return node_type::count_lesser(p, key, include_bound);
  }
  size_type count_greater(Key key, bool include_bound) const {
    assert(active);
    return node_type::count_greater(p, key, include_bound);
  }

  Key select(size_type k) const {
    assert(active);
    assert(k < size());
    return p->select(k);
  }

  WeightBalancedTree union_with(WeightBalancedTree &&a) {
    assert(active && a.active);
    a.active = 0;
    active = 0;

    return WeightBalancedTree(node_type::unionL(p, a.p));
  }

  using touch_func = std::function< void(Key key, T &v, T &accum, bool eq) >;
  static touch_func touch_default;

  void touch_path_to(const Key &target, const touch_func &touch) {
    assert(active);
    node_type::touch_path_to(p, target, touch);
  }

  size_type size() const {
    assert(active);
    return p->sz;
  }
  bool empty() const {
    assert(active);
    return p == node_type::get_NIL();
  }
};

template < class Key, class M_act >
typename WeightBalancedTree< Key, M_act >::touch_func
    WeightBalancedTree< Key, M_act >::touch_default = [](...) {};

// }}}
}

template < class Key, class M_act >
using WBT = wbt::WeightBalancedTree< Key, M_act >;

/// --- RangeMedianWithUpdate {{{ ///

#include <ostream>
namespace wbt {
template < class _T, class Index = long long >
struct RangeMedianWithUpdate {
  using size_type = std::size_t;
  using T = _T;

  struct Point {
    Index x;
    T y;
    bool minus_inf = 0;

    Point() {}
    Point(Index x) : x(x), minus_inf(1) {}
    Point(Index x, T y) : x(x), y(y) {}
    bool operator<(const Point &a) const {
      if(x < a.x) return 1;
      if(a.x < x) return 0;
      if(a.minus_inf) return 0;
      if(minus_inf) return 1;
      return y < a.y;
    }

    friend std::ostream &operator<<(std::ostream &os, Point a) {
      if(a.minus_inf)
        os << "(" << a.x << ", "
           << "-inf"
           << ")";
      else
        os << "(" << a.x << ", " << a.y << ")";
      return os;
    }
  };

  struct RMWU_Monoid {
    using T = WeightBalancedTree< Point, Nothing >;
    static T op(T a, T b) { return a.union_with(std::move(b)); }
    static T identity() { return T(); }
  };
  struct RMWU_M_act {
    using Monoid = RMWU_Monoid;
    using X = typename Monoid::T;
    using M = char;
    static M op(const M &, const M &) { return 0; }
    static constexpr M identity() { return 0; }
    static X actInto(const M &, long long, const X &x) { return x; }
  };

  using T_SET = typename RMWU_Monoid::T;
  using WBT = WeightBalancedTree< T, RMWU_M_act >;

  WeightBalancedTree< T, RMWU_M_act > wbt;

  RangeMedianWithUpdate() {}
  template < class InputIter,
             class = typename std::iterator_traits< InputIter >::value_type >
  RangeMedianWithUpdate(InputIter first, InputIter last) {
    auto ite = first;
    for(size_type i = 0; ite != last; ++ite, ++i) {
      wbt.insert(*ite);
    }
    for(size_type i = 0; first != last; ++first, ++i) {
      auto v = *first;
      wbt.touch_path_to(v, [i, v](T, T_SET &x, T_SET &accum, bool eq) -> void {
        if(eq) x.insert(Point(i, v));
        accum.insert(Point(i, v));
      });
    }
  }
  void insert(Index i, T v) {
    wbt.insert(v);
    wbt.touch_path_to(v, [i, v](T, T_SET &x, T_SET &accum, bool eq) -> void {
      if(eq) x.insert(Point(i, v));
      accum.insert(Point(i, v));
    });
  }

  bool erase(Index i, T v) {
    bool erased = 0;
    wbt.touch_path_to(v, [&erased, i, v](T, T_SET &x, T_SET &accum, bool eq) {
      if(eq) erased = x.erase(Point(i, v));
      accum.erase(Point(i, v));
    });
    return erased;
  }

  Point range_select(Index i, Index j, size_type k) const {
    return range_select_dfs(wbt.p, i, j, k);
  }

  size_type range_count_smaller(Index i, Index j, T x, bool include_bound) const {
    return range_count_smaller_dfs(wbt.p, i, j, x, include_bound);
  }

private:
  Point range_select_dfs(typename WBT::const_pointer p, Index i, Index j,
                         size_type k) const {
    assert(p != WBT::node_type::get_NIL());
    size_type lsz = p->l->accum.count(i, j);
    if(k < lsz) {
      return range_select_dfs(p->l, i, j, k);
    }
    k -= lsz;
    size_type hsz = p->value.count(i, j);
    if(k < hsz) {
      return p->value.select(p->value.count_lesser(i, 0) + k);
    }
    k -= hsz;
    return range_select_dfs(p->r, i, j, k);
  }
  size_type range_count_smaller_dfs(typename WBT::const_pointer p, Index i, Index j, T x,
                                    bool include_bound) const {
    if(p == WBT::node_type::get_NIL()) return 0;
    if(x < p->key) return range_count_smaller_dfs(p->l, i, j, x, include_bound);
    // p->key <= x
    size_type lsz = p->l->accum.count(i, j);
    size_type hsz = p->value.count(i, j);
    if(!(p->key < x)) {
      if(include_bound) return lsz + hsz;
      return lsz;
    }
    return lsz + hsz + range_count_smaller_dfs(p->r, i, j, x, include_bound);
  }

public:
  Point range_median(Index i, Index j, bool choose_greater = 0) const {
    return range_select(i, j, (count(i, j) - 1 + choose_greater) / 2);
  }
  size_type count(Index i, Index j) const { return wbt.p->accum.count(i, j); }
  size_type size() const { return wbt.p->accum.size(); }
};
}

/// }}}--- ///

template < class T, class Index = long long >
using RangeMedianWithUpdate = wbt::RangeMedianWithUpdate< T, Index >;


// .add(i, v)   : bit[i] += v
// .get(i)      : bit[i]
// .sum(i)      : bit[0] + ... + bit[i]
// .range(l, r) : bit[l] + ... + bit[r]
// .lower_bound(T v) : min i that satisfies .sum(i) >= v
//    - use only when bit[i] >= 0 for all i > 0
/// --- Binary Indexed Tree {{{ ///
#include <cassert>
#include <vector>
template < class T = long long >
struct BinaryIndexedTree {
  using size_type = std::size_t;
  size_type n, m;
  T identity;
  std::vector< T > data;
  BinaryIndexedTree() : n(0) {}
  BinaryIndexedTree(size_type n, T identity = T())
    : n(n), identity(identity), data(n, identity) {
      m = 1;
      while(m < n) m <<= 1;
    }
  void add(size_type i, T x) {
    assert(i < n);
    i++;
    while(i <= n) {
      data[i - 1] = data[i - 1] + x;
      i += i & -i;
    }
  }
  T sum(int i) {
    if(i < 0) return identity;
    if(i >= static_cast<int>(n)) i = n - 1;
    i++;
    T s = identity;
    while(i > 0) {
      s = s + data[i - 1];
      i -= i & -i;
    }
    return s;
  }
  T get(int i) { return sum(i) - sum(i - 1); }
  T range(int a, int b) { return sum(b) - sum(a - 1); }
  size_type lower_bound(T w) {
    size_type i = 0;
    for(size_type k = m; k > 0; k >>= 1) {
      if(i + k <= n && data[i + k - 1] < w) w -= data[(i += k) - 1];
    }
    return i;
  }
};
/// }}}--- ///

template < class T = long long >
using BIT = BinaryIndexedTree< T >;

// FractionalCascadingSegmentTree
// < Under, Data [, yCompress = 1 [, Index] ] >(H, ...)
// .index(y, x)
// === init(doUnique) ===
// .set(y, x, val)         // index(y, x) must be done
// .fold(yl, yr, xl, xr)
// .fold(y, x)
// === --- ===
// only offline
/// --- Fractional Cascading SegmentTree {{{ ///
#include <algorithm>
#include <cassert>
#include <functional>
#include <map>
#include <vector>

template < class T, class U, bool yCompress = true, class Index = ll >
struct FractionalCascadingSegmentTree {
  size_t h;
  vector< T > dat;
  vector< vector< Index > > indices;
  vector< vector< size_t > > L, R;
  U identity;
  function< void(T &, int x, const U &) > setX;
  function< void(T &, vector< Index > &) > initX;
  function< U(T &, int x1, int x2) > foldX;
  function< U(const U &, const U &) > mergeY;
  FractionalCascadingSegmentTree() {}
  FractionalCascadingSegmentTree(size_t tempH, //
      const function< void(T &, int, const U &) > &setX,
      const function< void(T &, vector< Index > &) > &initX,
      const function< U(T &, int, int) > &foldX,
      const function< U(const U &, const U &) > &mergeY,
      U identity = U(), T initial = T())
    : identity(identity), setX(setX), initX(initX), foldX(foldX), mergeY(mergeY) {
      h = 1;
      while(h < tempH) h <<= 1;
      dat = vector< T >(2 * h, initial);
      indices = vector< vector< Index > >(2 * h);
      L = R = vector< vector< size_t > >(2 * h);
    }
  vector< Index > ys;
  map< Index, int > ymap;
  vector< pair< Index, Index > > pre_indecies;
  void index(Index i, Index j) {
    if(yCompress) {
      ys.push_back(i);
      pre_indecies.emplace_back(i, j);
    } else {
      size_t i2 = i;
      assert(i2 < h);
      indices[i2 + h].push_back(j);
    }
  }
  void init(bool doUnique) {
    if(yCompress) {
      sort(begin(ys), end(ys));
      ys.erase(unique(begin(ys), end(ys)), end(ys));
      {
        size_t i = 0;
        for(Index &y : ys) ymap[y] = i++;
      }
      for(pair< Index, Index > idx : pre_indecies) {
        indices[ymap[idx.first] + h].push_back(idx.second);
      }
    }
    for(size_t i = h; i < h * 2; i++) {
      sort(begin(indices[i]), end(indices[i]));
      if(doUnique)
        indices[i].erase(unique(begin(indices[i]), end(indices[i])), end(indices[i]));
      initX(dat[i], indices[i]);
    }
    for(size_t i = h - 1; i >= 1; i--) {
      size_t lsz = indices[i * 2].size();
      size_t rsz = indices[i * 2 + 1].size();
      size_t nsz = lsz + rsz;
      indices[i].resize(nsz);
      L[i].resize(nsz + 1, lsz);
      R[i].resize(nsz + 1, rsz);
      size_t p1 = 0, p2 = 0;
      while(p1 < lsz || p2 < rsz) {
        L[i][p1 + p2] = p1;
        R[i][p1 + p2] = p2;
        if(p1 < lsz && (p2 == rsz || indices[i * 2][p1] <= indices[i * 2 + 1][p2])) {
          indices[i][p1 + p2] = indices[i * 2][p1];
          p1++;
        } else {
          indices[i][p1 + p2] = indices[i * 2 + 1][p2];
          p2++;
        }
      }
      initX(dat[i], indices[i]);
    }
  }

public:
  void set(Index y, Index x, const U &val) {
    if(yCompress) {
      assert(ymap.count(y));
      _set(ymap[y], x, val);
    } else {
      size_t y2 = y;
      assert(y2 < h);
      _set(y2, x, val);
    }
  }

private:
  void _set(size_t y, Index x, const U &val) {
    size_t lower = lower_bound(begin(indices[1]), end(indices[1]), x) - begin(indices[1]);
    assert(lower < indices.size());
    size_t k = 1, l = 0, r = h;
    while(k != y + h) {
      setX(dat[k], lower, val);
      size_t mid = (l + r) >> 1;
      if(y < mid) {
        lower = L[k][lower];
        k = k * 2;
        r = mid;
      } else {
        lower = R[k][lower];
        k = k * 2 + 1;
        l = mid;
      }
    }
    setX(dat[k], lower, val);
    assert(indices[k][lower] == x);
  }

public:
  U fold(Index y, Index x) { return fold(y, y + Index(1), x, x + Index(1)); }
  U fold(Index a, Index b, Index l, Index r) {
    if(a >= b || l >= r) return identity;
    size_t lower = lower_bound(begin(indices[1]), end(indices[1]), l) - begin(indices[1]);
    size_t upper = lower_bound(begin(indices[1]), end(indices[1]), r) - begin(indices[1]);
    size_t a2, b2;
    if(yCompress) {
      a2 = lower_bound(begin(ys), end(ys), a) - begin(ys);
      b2 = lower_bound(begin(ys), end(ys), b) - begin(ys);
    } else {
      a2 = a, b2 = b;
      assert(a2 < h && b2 <= h);
    }
    return fold(a2, b2, lower, upper, 0, h, 1);
  }

private:
  U fold(size_t a, size_t b, size_t lower, size_t upper, size_t l, size_t r, size_t k) {
    if(lower == upper) return identity;
    if(b <= l || r <= a) return identity;
    if(a <= l && r <= b) return foldX(dat[k], lower, upper);
    return mergeY(fold(a, b, L[k][lower], L[k][upper], l, (l + r) >> 1, k * 2),
        fold(a, b, R[k][lower], R[k][upper], (l + r) >> 1, r, k * 2 + 1));
  }
};

/// }}}--- ///


constexpr int N = 4e5;
constexpr int Q = 4e5;


using Under = BIT<>;
using Value = ll;
using Data = ll;


constexpr int inf = 1e9;

int n, q;
int t[Q], l[Q], r[Q];
int med[Q], smaller[Q], bigger[Q];

int main() {
  std::ios::sync_with_stdio(false), std::cin.tie(0);
  cin >> n >> q;
  vector<int> v(n);

  FractionalCascadingSegmentTree< Under, Data, 1 > ecas(
      n + q + 1,
      // set x
      [](Under &dat, int x, const Data &val) -> void {
      // dat.add(x, -dat.get(x) + val);
      dat.add(x, val);
      },
      // init x
      [](Under &dat, const vector< ll > &indices) -> void {
      dat = Under(indices.size()); // serve initial?
      },
      // fold [l, r) // l < r
    [](Under &dat, int l, int r) -> Data { return dat.range(l, r - 1); },
    // merge y-direction
    [](Data a, Data b) -> Data { return a + b; }
  // optional identity
  // , identity
  );


  for(auto &e: v) cin >> e;
  for(int i = 0; i < q; i++) cin >> t[i] >> l[i] >> r[i], l[i]--;

  for(int i = 0; i < n; i++) ecas.index(v[i], i);

  auto w = v;

  dump(1);
  RangeMedianWithUpdate<int> rm(begin(v), end(v));

  dump(2);
  for(int i = 0; i < q; i++) {
    if(t[i] == 1) { // update
      rm.erase(l[i], w[l[i]]);
      rm.insert(l[i], r[i]);
      w[l[i]] = r[i];
      ecas.index(r[i], l[i]);
    } else { // query
      med[i] = rm.range_median(l[i], r[i]).y;
      smaller[i] = rm.range_count_smaller(l[i], r[i], med[i], 0);
      bigger[i] = r[i] - l[i] - rm.range_count_smaller(l[i], r[i], med[i], 1);
    }
  }

  dump(3);
  ecas.init(1);

  dump(4);

  for(int i = 0; i < n; i++) ecas.set(v[i], i, v[i]);

  dump(5);

  for(int i = 0; i < q; i++) {
    if(t[i] == 1) { // update
      ecas.set(v[l[i]], l[i], -v[l[i]]);
      ecas.set(r[i], l[i], r[i]);
      v[l[i]] = r[i];
    } else { // query
      ll z = -ecas.fold(-inf, med[i], l[i], r[i]) + ecas.fold(med[i] + 1, inf, l[i], r[i]);
      // dump(ecas.fold(-inf, med[i], l[i], r[i]));
      int len = r[i] - l[i];
      // dump(len);
      // dump(len / 2, smaller[i], len / 2 - smaller[i]);
      // dump(len - len / 2, bigger[i], len - len / 2 - bigger[i]);
      // dump(med[i]);
      // dump(v[l[i]], v[l[i] + 1], v[l[i] + 2]);
      z -= ll(len / 2 - smaller[i]) * med[i];
      z += ll((len - len / 2) - bigger[i]) * med[i];
      // dump(smaller[i], bigger[i]);
      if(len % 2 == 0) {
      } else {
        z -= med[i];
      }
      // if(i % 100 == 0) {
      //   ll z2 = 0;
      //   for(int j = l[i]; j < r[i]; j++) z2 += abs(v[j] - med[i]);
      //   assert(z2 == z);
      // }
      cout << z << "\n";
    }
  }

  return 0;
}
0