結果
| 問題 |
No.274 The Wall
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-17 23:20:41 |
| 言語 | Common Lisp (sbcl 2.5.0) |
| 結果 |
MLE
|
| 実行時間 | - |
| コード長 | 8,101 bytes |
| コンパイル時間 | 413 ms |
| コンパイル使用メモリ | 61,040 KB |
| 実行使用メモリ | 841,916 KB |
| 最終ジャッジ日時 | 2024-07-07 13:53:55 |
| 合計ジャッジ時間 | 5,826 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 7 MLE * 1 -- * 14 |
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 07 JUL 2024 01:53:48 PM): ; file: /home/judge/data/code/Main.lisp ; in: DEFUN MAIN ; (+ J (* 2 N)) ; ; note: doing signed word to integer coercion (cost 20), for: ; the first result of inline (signed-byte 64) arithmetic ; ; note: doing signed word to integer coercion (cost 20), for: ; the first result of inline (signed-byte 64) arithmetic ; ; compilation unit finished ; printed 2 notes ; wrote /home/judge/data/code/Main.fasl ; compilation finished in 0:00:00.075
ソースコード
;; -*- coding: utf-8 -*-
(eval-when (:compile-toplevel :load-toplevel :execute)
(sb-int:defconstant-eqx OPT
#+swank '(optimize (speed 3) (safety 2))
#-swank '(optimize (speed 3) (safety 0) (debug 0))
#'equal)
#+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
#-swank (set-dispatch-macro-character
#\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy
;; BEGIN_INSERTED_CONTENTS
(defmacro define-int-types (&rest bits)
`(progn
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)
;;;
;;; Disjoint set by Union-Find algorithm
;;;
(defstruct (disjoint-set
(:constructor make-disjoint-set
(size &aux (data (make-array size :element-type 'int32 :initial-element -1))))
(:conc-name ds-))
(data nil :type (simple-array int32 (*))))
(declaim (ftype (function * (values (mod #.array-total-size-limit) &optional)) ds-root))
(defun ds-root (x disjoint-set)
"Returns the root of X."
(declare #.OPT
((mod #.array-total-size-limit) x))
(let ((data (ds-data disjoint-set)))
(if (< (aref data x) 0)
x
(setf (aref data x)
(ds-root (aref data x) disjoint-set)))))
(declaim (inline ds-unite!))
(defun ds-unite! (x1 x2 disjoint-set)
"Destructively unites X1 and X2 and returns true iff X1 and X2 become
connected for the first time."
(let ((root1 (ds-root x1 disjoint-set))
(root2 (ds-root x2 disjoint-set)))
(unless (= root1 root2)
(let ((data (ds-data disjoint-set)))
;; ensure the size of root1 >= the size of root2
(when (> (aref data root1) (aref data root2))
(rotatef root1 root2))
(incf (aref data root1) (aref data root2))
(setf (aref data root2) root1)))))
(declaim (inline ds-connected-p))
(defun ds-connected-p (x1 x2 disjoint-set)
"Returns true iff X1 and X2 have the same root."
(= (ds-root x1 disjoint-set) (ds-root x2 disjoint-set)))
(declaim (ftype (function * (values fixnum &optional)) read-fixnum))
(defun read-fixnum (&optional (in *standard-input*))
(declare #.OPT)
(macrolet ((%read-byte ()
`(the (unsigned-byte 8)
#+swank (char-code (read-char in nil #\Nul))
#-swank (sb-impl::ansi-stream-read-byte in nil #.(char-code #\Nul) nil))))
(let* ((minus nil)
(result (loop (let ((byte (%read-byte)))
(cond ((<= 48 byte 57)
(return (- byte 48)))
((zerop byte) ; #\Nul
(error "Read EOF or #\Nul."))
((= byte #.(char-code #\-))
(setf minus t)))))))
(declare ((integer 0 #.most-positive-fixnum) result))
(loop
(let* ((byte (%read-byte)))
(if (<= 48 byte 57)
(setq result (+ (- byte 48)
(* 10 (the (integer 0 #.(floor most-positive-fixnum 10)) result))))
(return (if minus (- result) result))))))))
;;;
;;; Strongly connected components of directed graph
;;;
(defstruct (scc (:constructor %make-scc (graph revgraph posts components sizes count)))
(graph nil :type (simple-array list (*)))
;; reversed graph
(revgraph nil :type (simple-array list (*)))
;; vertices by post-order DFS
posts
;; components[i] := strongly connected component of the i-th vertex
(components nil :type (simple-array (unsigned-byte 32) (*)))
;; sizes[k] := size of the k-th strongly connected component
(sizes nil :type (simple-array (unsigned-byte 32) (*)))
;; the total number of strongly connected components
(count 0 :type (unsigned-byte 32)))
(declaim (inline %make-revgraph))
(defun %make-revgraph (graph)
(let* ((n (length graph))
(revgraph (make-array n :element-type 'list :initial-element nil)))
(dotimes (i n)
(dolist (dest (aref graph i))
(push i (aref revgraph dest))))
revgraph))
(defun make-scc (graph &optional revgraph)
"GRAPH := vector of adjacency lists
REVGRAPH := NIL | reversed graph of GRAPH"
(declare #.OPT
((simple-array list (*)) graph)
((or null (simple-array list (*))) revgraph))
(let* ((revgraph (or revgraph (%make-revgraph graph)))
(n (length graph))
(visited (make-array n :element-type 'bit :initial-element 0))
(posts (make-array n :element-type '(unsigned-byte 32)))
(components (make-array n :element-type '(unsigned-byte 32)))
(sizes (make-array n :element-type '(unsigned-byte 32)
:initial-element 0))
(pointer 0)
(ord 0) ; ordinal number for a strongly connected component
)
(declare ((unsigned-byte 32) pointer ord))
(assert (= n (length revgraph)))
(labels ((dfs (v)
(setf (aref visited v) 1)
(dolist (neighbor (aref graph v))
(when (zerop (aref visited neighbor))
(dfs neighbor)))
(setf (aref posts pointer) v)
(incf pointer))
(reversed-dfs (v ord)
(setf (aref visited v) 1
(aref components v) ord)
(incf (aref sizes ord))
(dolist (neighbor (aref revgraph v))
(when (zerop (aref visited neighbor))
(reversed-dfs neighbor ord)))))
(dotimes (v n)
(when (zerop (aref visited v))
(dfs v)))
(fill visited 0)
(loop for i from (- n 1) downto 0
for v = (aref posts i)
when (zerop (aref visited v))
do (reversed-dfs v ord)
(incf ord))
(%make-scc graph revgraph posts components sizes ord))))
(defmacro dbg (&rest forms)
#+swank
(if (= (length forms) 1)
`(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
`(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
#-swank (declare (ignore forms)))
(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
(let ((*read-default-float-format* 'double-float))
(prog1 (princ obj stream) (terpri stream))))
(defconstant +mod+ 1000000007)
;;;
;;; Body
;;;
(defun main ()
(declare #.OPT)
(let* ((n (read))
(m (read))
(dset (make-disjoint-set (+ n n m)))
(graph (make-array (* 4 n) :element-type 'list :initial-element nil)))
(declare (uint16 n m))
(dotimes (i n)
(let* ((l (read-fixnum))
(r (read-fixnum)))
(loop for j from l to r
do (ds-unite! i (+ j (* 2 n)) dset))
(loop for j from (- m r 1) to (- m l 1)
do (ds-unite! (+ i n) (+ j (* 2 n)) dset))))
(labels ((negate (x)
(declare (uint16 x))
(mod (+ x (* 2 n)) (* 4 n)))
(add-clause! (literal1 literal2 bool1 bool2)
(unless bool1
(setq literal1 (negate literal1)))
(unless bool2
(setq literal2 (negate literal2)))
(push literal2 (aref graph (negate literal1)))
(push literal1 (aref graph (negate literal2)))))
(gc :full t)
(dotimes (x (* 2 n))
(loop for y from (+ x 1) below (* 2 n)
do (when (ds-connected-p x y dset)
(add-clause! x y nil nil))))
(dotimes (x n)
(add-clause! x (+ x n) t t)
(add-clause! x (+ x n) nil nil))
(let* ((scc (make-scc graph))
(comps (scc-components scc)))
(write-line
(if (loop for x below (* 2 n)
thereis (= (aref comps x)
(aref comps (+ x (* 2 n)))))
"NO"
"YES"))))))
#-swank (main)