結果

問題 No.274 The Wall
ユーザー sansaquasansaqua
提出日時 2019-09-18 00:09:14
言語 Common Lisp
(sbcl 2.3.8)
結果
MLE  
実行時間 -
コード長 6,718 bytes
コンパイル時間 159 ms
コンパイル使用メモリ 54,496 KB
実行使用メモリ 666,864 KB
最終ジャッジ日時 2024-07-07 13:59:23
合計ジャッジ時間 4,748 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 11 ms
31,524 KB
testcase_01 AC 12 ms
27,432 KB
testcase_02 AC 12 ms
27,432 KB
testcase_03 AC 827 ms
238,248 KB
testcase_04 AC 12 ms
31,552 KB
testcase_05 AC 10 ms
27,304 KB
testcase_06 AC 11 ms
27,432 KB
testcase_07 AC 10 ms
27,304 KB
testcase_08 AC 11 ms
31,528 KB
testcase_09 AC 13 ms
27,432 KB
testcase_10 AC 12 ms
31,548 KB
testcase_11 MLE -
testcase_12 AC 26 ms
31,892 KB
testcase_13 AC 11 ms
27,308 KB
testcase_14 AC 18 ms
27,688 KB
testcase_15 AC 29 ms
29,804 KB
testcase_16 AC 469 ms
138,612 KB
testcase_17 AC 446 ms
137,344 KB
testcase_18 AC 494 ms
134,692 KB
testcase_19 AC 44 ms
29,708 KB
testcase_20 AC 49 ms
31,888 KB
testcase_21 AC 50 ms
29,728 KB
testcase_22 AC 53 ms
31,892 KB
testcase_23 AC 51 ms
29,728 KB
testcase_24 AC 52 ms
33,776 KB
testcase_25 AC 54 ms
31,892 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
; compiling file "/home/judge/data/code/Main.lisp" (written 07 JUL 2024 01:59:15 PM):

; wrote /home/judge/data/code/Main.fasl
; compilation finished in 0:00:00.056

ソースコード

diff #

;; -*- coding: utf-8 -*-
(eval-when (:compile-toplevel :load-toplevel :execute)
  (sb-int:defconstant-eqx OPT
    #+swank '(optimize (speed 3) (safety 2))
    #-swank '(optimize (speed 3) (safety 0) (debug 0))
    #'equal)
  #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t)
  #-swank (set-dispatch-macro-character
           #\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t))))
#+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax)
#-swank (disable-debugger) ; for CS Academy

;; BEGIN_INSERTED_CONTENTS
(defmacro define-int-types (&rest bits)
  `(progn
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits)
     ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits)))
(define-int-types 2 4 7 8 15 16 31 32 62 63 64)

(declaim (ftype (function * (values fixnum &optional)) read-fixnum))
(defun read-fixnum (&optional (in *standard-input*))
  (declare #.OPT)
  (macrolet ((%read-byte ()
               `(the (unsigned-byte 8)
                     #+swank (char-code (read-char in nil #\Nul))
                     #-swank (sb-impl::ansi-stream-read-byte in nil #.(char-code #\Nul) nil))))
    (let* ((minus nil)
           (result (loop (let ((byte (%read-byte)))
                           (cond ((<= 48 byte 57)
                                  (return (- byte 48)))
                                 ((zerop byte) ; #\Nul
                                  (error "Read EOF or #\Nul."))
                                 ((= byte #.(char-code #\-))
                                  (setf minus t)))))))
      (declare ((integer 0 #.most-positive-fixnum) result))
      (loop
        (let* ((byte (%read-byte)))
          (if (<= 48 byte 57)
              (setq result (+ (- byte 48)
                              (* 10 (the (integer 0 #.(floor most-positive-fixnum 10)) result))))
              (return (if minus (- result) result))))))))

;;;
;;; Strongly connected components of directed graph
;;;

(defstruct (scc (:constructor %make-scc (graph revgraph posts components count)))
  (graph nil :type (simple-array list (*)))
  ;; reversed graph
  (revgraph nil :type (simple-array list (*)))
  ;; vertices by post-order DFS
  posts
  ;; components[i] := strongly connected component of the i-th vertex
  (components nil :type (simple-array (unsigned-byte 32) (*)))
  ;; the total number of strongly connected components
  (count 0 :type (unsigned-byte 32)))


(defun make-scc (graph revgraph)
  "GRAPH, REVGRAPH := vector of adjacency lists"
  (declare #.OPT
           ((simple-array list (*)) graph revgraph))
  (let* ((n (length graph))
         (visited (make-array n :element-type 'bit :initial-element 0))
         (posts (make-array n :element-type '(unsigned-byte 32)))
         (components (make-array n :element-type '(unsigned-byte 32)))
         (pointer 0)
         (ord 0) ; ordinal number for a strongly connected component
         )
    (declare ((unsigned-byte 32) pointer ord))
    (assert (= n (length revgraph)))
    (labels ((dfs (v)
               (setf (aref visited v) 1)
               (dolist (neighbor (aref graph v))
                 (when (zerop (aref visited neighbor))
                   (dfs neighbor)))
               (setf (aref posts pointer) v)
               (incf pointer))
             (reversed-dfs (v ord)
               (setf (aref visited v) 1
                     (aref components v) ord)
               (dolist (neighbor (aref revgraph v))
                 (when (zerop (aref visited neighbor))
                   (reversed-dfs neighbor ord)))))
      (dotimes (v n)
        (when (zerop (aref visited v))
          (dfs v)))
      (fill visited 0)
      (loop for i from (- n 1) downto 0
            for v = (aref posts i)
            when (zerop (aref visited v))
            do (reversed-dfs v ord)
               (incf ord))
      (%make-scc graph revgraph posts components ord))))

(defmacro dbg (&rest forms)
  #+swank
  (if (= (length forms) 1)
      `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms))
      `(format *error-output* "~A => ~A~%" ',forms `(,,@forms)))
  #-swank (declare (ignore forms)))

(declaim (inline println))
(defun println (obj &optional (stream *standard-output*))
  (let ((*read-default-float-format* 'double-float))
    (prog1 (princ obj stream) (terpri stream))))

(defconstant +mod+ 1000000007)

;;;
;;; Body
;;;

(defun main ()
  (declare #.OPT)
  (let* ((n (read))
         (m (read))
         (ls (make-array (* 2 n) :element-type 'uint16))
         (rs (make-array (* 2 n) :element-type 'uint16))
         (graph (make-array (* 4 n) :element-type 'list :initial-element nil))
         (revgraph (make-array (* 4 n) :element-type 'list :initial-element nil))
         (4n (* 4 n)))
    (declare (uint16 n m 4n))
    (dotimes (i n)
      (let* ((l (read-fixnum))
             (r (read-fixnum)))
        (declare (uint16 l r))
        (setf (aref ls i) l
              (aref rs i) r
              (aref ls (+ i n)) (- m r 1)
              (aref rs (+ i n)) (- m l 1))))
    (labels ((overlap-p (x y)
               (let ((l1 (aref ls x))
                     (r1 (aref rs x))
                     (l2 (aref ls y))
                     (r2 (aref rs y)))
                 (not (or (< r1 l2) (< r2 l1)))))
             (negate (x)
               (declare (uint16 x))
               (let ((res (+ x (* 2 n))))
                 (if (>= res 4n)
                     (- res 4n)
                     res)))
             (add-clause! (literal1 literal2 bool1 bool2)
               (unless bool1
                 (setq literal1 (negate literal1)))
               (unless bool2
                 (setq literal2 (negate literal2)))
               (let ((neg1 (negate literal1))
                     (neg2 (negate literal2)))
                 (push literal2 (aref graph neg1))
                 (push neg1 (aref revgraph literal2))
                 (push literal1 (aref graph neg2))
                 (push neg2 (aref revgraph literal1)))))
      (declare (inline negate))
      (gc :full t)
      (dotimes (x (* 2 n))
        (loop for y from (+ x 1) below (* 2 n)
              do (when (and (/= (+ x n) y)
                            (overlap-p x y))
                   (add-clause! x y nil nil))))
      (dotimes (x n)
        (add-clause! x (+ x n) t t)
        (add-clause! x (+ x n) nil nil))
      (let* ((scc (make-scc graph revgraph))
             (comps (scc-components scc)))
        (write-line
         (if (loop for x below (* 2 n)
                   thereis (= (aref comps x)
                              (aref comps (+ x (* 2 n)))))
             "NO"
             "YES"))))))

#-swank (main)
0