結果

問題 No.829 成長関数インフレ中
ユーザー beetbeet
提出日時 2019-09-18 11:30:50
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,902 ms / 2,000 ms
コード長 9,602 bytes
コンパイル時間 4,072 ms
コンパイル使用メモリ 254,608 KB
実行使用メモリ 75,408 KB
最終ジャッジ日時 2024-07-07 22:44:43
合計ジャッジ時間 12,470 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 8 ms
6,784 KB
testcase_01 AC 9 ms
6,784 KB
testcase_02 AC 9 ms
6,656 KB
testcase_03 AC 9 ms
6,912 KB
testcase_04 AC 9 ms
6,656 KB
testcase_05 AC 9 ms
6,784 KB
testcase_06 AC 9 ms
6,784 KB
testcase_07 AC 9 ms
6,656 KB
testcase_08 AC 9 ms
6,784 KB
testcase_09 AC 9 ms
6,784 KB
testcase_10 AC 9 ms
6,784 KB
testcase_11 AC 8 ms
6,784 KB
testcase_12 AC 21 ms
8,192 KB
testcase_13 AC 10 ms
6,912 KB
testcase_14 AC 17 ms
7,808 KB
testcase_15 AC 354 ms
22,616 KB
testcase_16 AC 754 ms
38,124 KB
testcase_17 AC 1,283 ms
40,996 KB
testcase_18 AC 1,738 ms
74,916 KB
testcase_19 AC 1,434 ms
43,684 KB
testcase_20 AC 1,902 ms
75,408 KB
testcase_21 AC 16 ms
7,680 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
using namespace std;
using Int = long long;
template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}
template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}

template<typename T,T MOD = 1000000007>
struct Mint{
  static constexpr T mod = MOD;
  T v;
  Mint():v(0){}
  Mint(signed v):v(v){}
  Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}

  Mint pow(long long k){
    Mint res(1),tmp(v);
    while(k){
      if(k&1) res*=tmp;
      tmp*=tmp;
      k>>=1;
    }
    return res;
  }

  static Mint add_identity(){return Mint(0);}
  static Mint mul_identity(){return Mint(1);}

  Mint inv(){return pow(MOD-2);}

  Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
  Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
  Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
  Mint& operator/=(Mint a){return (*this)*=a.inv();}

  Mint operator+(Mint a) const{return Mint(v)+=a;};
  Mint operator-(Mint a) const{return Mint(v)-=a;};
  Mint operator*(Mint a) const{return Mint(v)*=a;};
  Mint operator/(Mint a) const{return Mint(v)/=a;};

  Mint operator-() const{return v?Mint(MOD-v):Mint(v);}

  bool operator==(const Mint a)const{return v==a.v;}
  bool operator!=(const Mint a)const{return v!=a.v;}
  bool operator <(const Mint a)const{return v <a.v;}
};
template<typename T,T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T,T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}

constexpr int bmds(int x){
  const int v[] = {1012924417, 924844033, 998244353,
                   897581057, 645922817};
  return v[x];
}
constexpr int brts(int x){
  const int v[] = {5, 5, 3, 3, 3};
  return v[x];
}

template<int X>
struct NTT{
  static constexpr int md = bmds(X);
  static constexpr int rt = brts(X);
  using M = Mint<int, md>;
  vector< vector<M> > rts,rrts;

  void ensure_base(int n){
    if((int)rts.size()>=n) return;
    rts.resize(n);rrts.resize(n);
    for(int i=1;i<n;i<<=1){
      if(!rts[i].empty()) continue;
      M w=M(rt).pow((md-1)/(i<<1));
      M rw=w.inv();
      rts[i].resize(i);rrts[i].resize(i);
      rts[i][0]=M(1);rrts[i][0]=M(1);
      for(int k=1;k<i;k++){
        rts[i][k]=rts[i][k-1]*w;
        rrts[i][k]=rrts[i][k-1]*rw;
      }
    }
  }

  void ntt(vector<M> &as,bool f,int n=-1){
    if(n==-1) n=as.size();
    assert((n&(n-1))==0);
    ensure_base(n);

    for(int i=0,j=1;j+1<n;j++){
      for(int k=n>>1;k>(i^=k);k>>=1);
      if(i>j) swap(as[i],as[j]);
    }

    for(int i=1;i<n;i<<=1){
      for(int j=0;j<n;j+=i*2){
        for(int k=0;k<i;k++){
          M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);
          as[i+j+k]=as[j+k]-z;
          as[j+k]+=z;
        }
      }
    }

    if(f){
      M tmp=M(n).inv();
      for(int i=0;i<n;i++) as[i]*=tmp;
    }
  }

  vector<M> multiply(vector<M> as,vector<M> bs){
    int need=as.size()+bs.size()-1;
    int sz=1;
    while(sz<need) sz<<=1;
    as.resize(sz,M(0));
    bs.resize(sz,M(0));

    ntt(as,0);ntt(bs,0);
    for(int i=0;i<sz;i++) as[i]*=bs[i];
    ntt(as,1);

    as.resize(need);
    return as;
  }

  vector<int> multiply(vector<int> as,vector<int> bs){
    vector<M> am(as.size()),bm(bs.size());
    for(int i=0;i<(int)am.size();i++) am[i]=M((long long)as[i]);
    for(int i=0;i<(int)bm.size();i++) bm[i]=M((long long)bs[i]);
    vector<M> cm=multiply(am,bm);
    vector<int> cs(cm.size());
    for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;
    return cs;
  }
};
template<int X> constexpr int NTT<X>::md;
template<int X> constexpr int NTT<X>::rt;

//BEGIN CUT HERE
struct ArbitraryModConvolution{
  using ll = long long;
  static NTT<0> ntt0;
  static NTT<1> ntt1;
  static NTT<2> ntt2;

  static constexpr int pow(int a,int b,int md){
    int res=1;
    a=a%md;
    while(b){
      if(b&1) res=(ll)res*a%md;
      a=(ll)a*a%md;
      b>>=1;
    }
    return res;
  }

  static constexpr int inv(int x,int md){
    return pow(x,md-2,md);
  }

  inline void garner(int &c0,int c1,int c2,int m01,int MOD){
    static constexpr int r01=inv(ntt0.md,ntt1.md);
    static constexpr int r02=inv(ntt0.md,ntt2.md);
    static constexpr int r12=inv(ntt1.md,ntt2.md);

    c1=(ll)(c1-c0)*r01%ntt1.md;
    if(c1<0) c1+=ntt1.md;

    c2=(ll)(c2-c0)*r02%ntt2.md;
    c2=(ll)(c2-c1)*r12%ntt2.md;
    if(c2<0) c2+=ntt2.md;

    c0+=(ll)c1*ntt0.md%MOD;
    if(c0>=MOD) c0-=MOD;
    c0+=(ll)c2*m01%MOD;
    if(c0>=MOD) c0-=MOD;
  }

  inline void garner(vector< vector<int> > &cs,int MOD){
    int m01 =(ll)ntt0.md*ntt1.md%MOD;
    int sz=cs[0].size();
    for(int i=0;i<sz;i++) garner(cs[0][i],cs[1][i],cs[2][i],m01,MOD);
  }

  vector<int> multiply(vector<int> as,vector<int> bs,int MOD){
    vector< vector<int> > cs(3);
    cs[0]=ntt0.multiply(as,bs);
    cs[1]=ntt1.multiply(as,bs);
    cs[2]=ntt2.multiply(as,bs);
    size_t sz=as.size()+bs.size()-1;
    for(auto& v:cs) v.resize(sz);
    garner(cs,MOD);
    return cs[0];
  }

  template<typename T,T MOD>
  vector<int> multiply(vector<int> as,vector<int> bs){
    vector< vector<int> > cs(3);
    cs[0]=ntt0.multiply(as,bs);
    cs[1]=ntt1.multiply(as,bs);
    cs[2]=ntt2.multiply(as,bs);
    size_t sz=as.size()+bs.size()-1;
    for(auto& v:cs) v.resize(sz);
    garner(cs,MOD);
    return cs[0];
  }

  template<typename T,T MOD>
  decltype(auto) multiply(vector< Mint<T, MOD> > am,
                          vector< Mint<T, MOD> > bm){
    using M = Mint<T, MOD>;
    vector<int> as(am.size()),bs(bm.size());
    for(int i=0;i<(int)as.size();i++) as[i]=am[i].v;
    for(int i=0;i<(int)bs.size();i++) bs[i]=bm[i].v;
    vector<int> cs=multiply(as,bs,MOD);
    vector<M> cm(cs.size());
    for(int i=0;i<(int)cm.size();i++) cm[i]=M(cs[i]);
    return cm;
  }
};
NTT<0> ArbitraryModConvolution::ntt0;
NTT<1> ArbitraryModConvolution::ntt1;
NTT<2> ArbitraryModConvolution::ntt2;
//END CUT HERE

template<typename M>
class Enumeration{
private:
  static vector<M> fact,finv,invs;
public:
  static void init(int n){
    n=min<decltype(M::mod)>(n,M::mod-1);

    int m=fact.size();
    if(n<m) return;

    fact.resize(n+1,1);
    finv.resize(n+1,1);
    invs.resize(n+1,1);

    if(m==0) m=1;
    for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);
    finv[n]=M(1)/fact[n];
    for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);
    for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];
  }

  static M Fact(int n){
    init(n);
    return fact[n];
  }
  static M Finv(int n){
    init(n);
    return finv[n];
  }
  static M Invs(int n){
    init(n);
    return invs[n];
  }

  static M C(int n,int k){
    if(n<k||k<0) return M(0);
    init(n);
    return fact[n]*finv[n-k]*finv[k];
  }

  static M P(int n,int k){
    if(n<k||k<0) return M(0);
    init(n);
    return fact[n]*finv[n-k];
  }

  static M H(int n,int k){
    if(n<0||k<0) return M(0);
    if(!n&&!k) return M(1);
    init(n+k-1);
    return C(n+k-1,k);
  }

  static M S(int n,int k){
    M res;
    init(k);
    for(int i=1;i<=k;i++){
      M tmp=C(k,i)*M(i).pow(n);
      if((k-i)&1) res-=tmp;
      else res+=tmp;
    }
    return res*=finv[k];
  }

  static vector<vector<M> > D(int n,int m){
    vector<vector<M> > dp(n+1,vector<M>(m+1,0));
    dp[0][0]=M(1);
    for(int i=0;i<=n;i++){
      for(int j=1;j<=m;j++){
        if(i-j>=0) dp[i][j]=dp[i][j-1]+dp[i-j][j];
        else dp[i][j]=dp[i][j-1];
      }
    }
    return dp;
  }

  static M B(int n,int k){
    if(n==0) return M(1);
    k=min(k,n);
    init(k);
    vector<M> dp(k+1);
    dp[0]=M(1);
    for(int i=1;i<=k;i++)
      dp[i]=dp[i-1]+((i&1)?-finv[i]:finv[i]);
    M res;
    for(int i=1;i<=k;i++)
      res+=M(i).pow(n)*finv[i]*dp[k-i];
    return res;
  }

  static M montmort(int n){
    M res;
    init(n);
    for(int k=2;k<=n;k++){
      if(k&1) res-=finv[k];
      else res+=finv[k];
    }
    return res*=fact[n];
  }

  static M LagrangePolynomial(vector<M> &y,M t){
    int n=y.size()-1;
    if(t.v<=n) return y[t.v];
    init(n+1);
    vector<M> dp(n+1,1),pd(n+1,1);
    for(int i=0;i<n;i++) dp[i+1]=dp[i]*(t-M(i));
    for(int i=n;i>0;i--) pd[i-1]=pd[i]*(t-M(i));
    M res{0};
    for(int i=0;i<=n;i++){
      M tmp=y[i]*dp[i]*pd[i]*finv[i]*finv[n-i];
      if((n-i)&1) res-=tmp;
      else res+=tmp;
    }
    return res;
  }
};
template<typename M>
vector<M> Enumeration<M>::fact = vector<M>();
template<typename M>
vector<M> Enumeration<M>::finv = vector<M>();
template<typename M>
vector<M> Enumeration<M>::invs = vector<M>();

//INSERT ABOVE HERE
signed YUKI_829(){
  cin.tie(0);
  ios::sync_with_stdio(0);

  using ll = long long;
  int n,b;
  cin>>n>>b;
  vector<int> s(n);
  for(Int i=0;i<n;i++) cin>>s[i];
  using M = Mint<int>;
  using E = Enumeration<M>;
  E::init(3e5);

  vector<int> cnt(n,0);
  for(int i=0;i<n;i++) cnt[s[i]]++;

  using P = pair<int, vector<int> > ;
  priority_queue<P> pq;
  pq.emplace(-1,vector<int>(1,1));

  int sum=0;
  for(int i=n-1;i>=0;i--){
    if(cnt[i]==0) continue;
    M x=E::H(sum,cnt[i]);
    M y=E::H(sum+1,cnt[i])-x;
    x*=E::Fact(cnt[i]);
    y*=E::Fact(cnt[i]);

    pq.emplace(-2,vector<int>({x.v,y.v}));
    sum+=cnt[i];
  }

  const int MOD = 1e9+7;
  ArbitraryModConvolution arb;
  while(pq.size()>1u){
    auto as=pq.top().second;pq.pop();
    auto bs=pq.top().second;pq.pop();
    auto cs=arb.multiply<int, MOD>(as,bs);
    pq.emplace(-(int)cs.size(),cs);
  }

  auto dp=pq.top().second;
  M ans(0),res(1);
  for(int j=0;j<(int)dp.size();j++){
    ans+=M((ll)j*(ll)dp[j])*res;
    res*=M(b);
  }
  cout<<ans.v<<endl;
  return 0;
}
/*
  verified on 2019/09/08
  https://yukicoder.me/problems/no/829
*/

signed main(){
  YUKI_829();
  return 0;
}
0