結果
問題 | No.23 技の選択 |
ユーザー | hamray |
提出日時 | 2019-09-20 21:07:06 |
言語 | C++11 (gcc 13.3.0) |
結果 |
AC
|
実行時間 | 2 ms / 5,000 ms |
コード長 | 5,598 bytes |
コンパイル時間 | 1,431 ms |
コンパイル使用メモリ | 168,324 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-09-14 15:58:18 |
合計ジャッジ時間 | 2,526 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 33 |
入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 1 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h>#define M_PI 3.14159265358979323846using namespace std;//conversion//------------------------------------------inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; }template<class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); }inline int readInt() { int x; scanf("%d", &x); return x; }//typedef//------------------------------------------typedef vector<int> VI;typedef vector<VI> VVI;typedef vector<string> VS;typedef pair<int, int> PII;typedef pair<int, PII> TIII;typedef long long LL;typedef unsigned long long ULL;typedef vector<LL> VLL;typedef vector<VLL> VVLL;//container util//------------------------------------------#define ALL(a) (a).begin(),(a).end()#define RALL(a) (a).rbegin(), (a).rend()#define PB push_back#define MP make_pair#define SZ(a) int((a).size())#define SQ(a) ((a)*(a))#define EACH(i,c) for(typeof((c).begin()) i=(c).begin(); i!=(c).end(); ++i)#define EXIST(s,e) ((s).find(e)!=(s).end())#define SORT(c) sort((c).begin(),(c).end())//repetition//------------------------------------------#define FOR(i,s,n) for(int i=s;i<(int)n;++i)#define REP(i,n) FOR(i,0,n)#define MOD 1000000007#define rep(i, a, b) for(int i = a; i < (b); ++i)#define trav(a, x) for(auto& a : x)#define all(x) x.begin(), x.end()#define sz(x) (int)(x).size()typedef long long ll;typedef pair<int, int> pii;typedef vector<int> vi;const double EPS = 1E-8;#define chmin(x,y) x=min(x,y)#define chmax(x,y) x=max(x,y)const int INF = 100000000;struct Edge {int to, from;ll cost;Edge(int from, int to, ll cost): from(from), to(to), cost(cost) {}};struct UnionFind {vector<int> data;UnionFind(int size) : data(size, -1) { }bool unionSet(int x, int y) {x = root(x); y = root(y);if (x != y) {if (data[y] < data[x]) swap(x, y);data[x] += data[y]; data[y] = x;}return x != y;}bool findSet(int x, int y) {return root(x) == root(y);}int root(int x) {return data[x] < 0 ? x : data[x] = root(data[x]);}int size(int x) {return -data[root(x)];}};typedef vector<vector<Edge>> AdjList;AdjList graph;ll mod_pow(ll x, ll n, ll mod){ll res = 1;bool c = false;while(n){if(n&1) res = res * x;if(res > mod){c = true;res %= mod;}x = x * x %mod;n >>= 1;}if(c) return mod;return res;}#define SIEVE_SIZE 10000+10bool sieve[SIEVE_SIZE];void make_sieve(){for(int i=0; i<SIEVE_SIZE; ++i) sieve[i] = true;sieve[0] = sieve[1] = false;for(int i=2; i*i<SIEVE_SIZE; ++i) if(sieve[i]) for(int j=2; i*j<SIEVE_SIZE; ++j) sieve[i*j] = false;}bool isprime(ll n){for(ll i=2; i*i<=n; ++i) if(n%i==0) return false;return true;}template<typename T>vector<T> gauss_jordan(const vector<vector<T>>& A, const vector<T>& b){int n = A.size();vector<vector<T>> B(n, vector<T>(n+1));for(int i=0; i<n; ++i){for(int j=0; j<n; ++j){B[i][j] = A[i][j];}}for(int i=0; i<n; ++i) B[i][n] = b[i];for(int i=0; i<n; ++i){int pivot = i;for(int j=i; j<n; ++j){if(abs(B[j][i]) > abs(B[pivot][i])) pivot = j;}swap(B[i], B[pivot]);if(abs(B[i][i]) < EPS) return vector<T>(); //解なしfor(int j=i+1; j<=n; ++j) B[i][j] /= B[i][i];for(int j=0; j<n; ++j){if(i != j){for(int k=i+1; k<=n; ++k) B[j][k] -= B[i][j] * B[i][k];}}}vector<T> x(n);for(int i=0; i<n; ++i) x[i] = B[i][n];return x;}ll GCD(ll a, ll b){if(a<b) swap(a,b);if(b == 0) return a;return GCD(b, a%b);}const int MAX = 510000;long long fac[MAX], finv[MAX], inv[MAX];// テーブルを作る前処理void COMinit() {fac[0] = fac[1] = 1;finv[0] = finv[1] = 1;inv[1] = 1;for (int i = 2; i < MAX; i++){fac[i] = fac[i - 1] * i % MOD;inv[i] = MOD - inv[MOD%i] * (MOD / i) % MOD;finv[i] = finv[i - 1] * inv[i] % MOD;}}// 二項係数計算long long COM(int n, int k){if (n < k) return 0;if (n < 0 || k < 0) return 0;return fac[n] * (finv[k] * finv[n - k] % MOD) % MOD;}typedef vector<ll> vec;typedef vector<vec> mat;mat mul(mat &A, mat &B) {mat C(A.size(), vec((int)B[0].size()));for(int i=0; i<A.size(); ++i){for(int k=0; k<B.size(); ++k){for(int j=0; j<B[0].size(); ++j){C[i][j] = (C[i][j] + A[i][k] * B[k][j] %MOD) % MOD;}}}return C;}mat mat_pow(mat A, ll n) {mat B(A.size(), vec((int)A.size()));for(int i=0; i<A.size(); ++i){B[i][i] = 1;}while(n > 0) {if(n & 1) B = mul(B, A);A = mul(A, A);n >>= 1;}return B;}bool operator<(const pii& a, const pii& b){if(a.first == b.first) return a.second < b.second;return a.first < b.first;}int a[100010];int b[100010];int main() {cin.tie(0);ios::sync_with_stdio(false);cout << fixed << setprecision(20);int h, a, d; cin >> h >> a >> d;double ans = 1e9;int i=0;while(a*i <= h){int t = (h-a*i)/d;if((h-a*i)%d!=0) t++;ans = min(ans, i + t *1.5 );i++;}int t = h/a;if(h%a!=0) t++;ans = min(ans, (double)t);cout << ans << endl;return 0;}