結果

問題 No.25 有限小数
ユーザー codershifthcodershifth
提出日時 2015-07-20 23:37:05
言語 C++11
(gcc 11.4.0)
結果
WA  
実行時間 -
コード長 2,201 bytes
コンパイル時間 1,382 ms
コンパイル使用メモリ 158,692 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-08 11:26:16
合計ジャッジ時間 2,525 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 2 ms
5,376 KB
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 2 ms
5,376 KB
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 AC 1 ms
5,376 KB
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 AC 1 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 2 ms
5,376 KB
testcase_29 AC 2 ms
5,376 KB
testcase_30 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

typedef long long ll;
typedef unsigned long long ull;

#define FOR(i,a,b) for(int (i)=(a);i<(b);i++)
#define REP(i,n) FOR(i,0,n)
#define RANGE(vec) (vec).begin(),(vec).end()

using namespace std;

template<typename T>
T gcd(T a, T b) {
    if ( a < b )
        std::swap(a,b);
    if ( b == 0 )
        return a;
    return gcd(b, a%b);
}

class FiniteDecimal {
public:
    void solve(void) {
            ll N,M;
            cin>>N>>M;
            ll g = gcd(N,M);
            // 互いに素にしておく
            N /= g;
            M /= g;

            if (N % M == 0)
            {
                ll x = N/M;
                while (x%10 == 0)
                    x /= 10;
                cout<<x%10<<endl;
                return;
            }
            // 有限少数なら
            //           K
            // N/M = A + ∑ a[k] / 10^(-k) (A は整数) と書ける
            //          k=1
            //
            // 式変形すると
            // 10^K * N = M * (10*A'+a[K]) = M * B
            //
            // N,M は互いに素なので M*B が 10 の冪乗であることが必要十分
            // B は 10 の倍数でないので M は 5 or 2 の冪で割れる
            //
            // 逆に M が 5 or 2 で割り切れるなら
            //
            // N = ∑ c[k] * 10^k と書けて N/M の各項は
            //
            //  c[k]*10^k
            // -----------  となる
            //  5^k * 2^l
            // 分子分母に適当に数字w書けて b/10^m の形にできる。
            //
            int k1 = 0;
            ll  m = M;
            while (m%5 == 0)
            {
                m /= 5;
                ++k1;
            }
            int k2 = 0;
            while (m%2 == 0)
            {
                m /= 2;
                ++k2;
            }
            if (m == 1)
                cout<<(ll)(N*pow(10,max(k1,k2))/M)%10<<endl;
            else
                cout<<-1<<endl;
    }
};

#if 1
int main(int argc, char *argv[])
{
        ios::sync_with_stdio(false);
        auto obj = new FiniteDecimal();
        obj->solve();
        delete obj;
        return 0;
}
#endif
0