結果
| 問題 |
No.890 移調の限られた旋法
|
| コンテスト | |
| ユーザー |
LayCurse
|
| 提出日時 | 2019-09-20 21:34:03 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 32 ms / 2,000 ms |
| コード長 | 9,083 bytes |
| コンパイル時間 | 3,048 ms |
| コンパイル使用メモリ | 216,896 KB |
| 最終ジャッジ日時 | 2025-01-07 18:40:53 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 32 |
ソースコード
#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD 1000000007
void *wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct mint{
static unsigned md;
static unsigned W;
static unsigned R;
static unsigned Rinv;
static unsigned mdninv;
static unsigned RR;
unsigned val;
mint(){
}
mint(int a){
val = mulR(a);
}
mint(unsigned a){
val = mulR(a);
}
mint(long long a){
val = mulR(a);
}
mint(unsigned long long a){
val = mulR(a);
}
int get_inv(long long a, int md){
long long t=a;
long long s=md;
long long u=1;
long long v=0;
long long e;
while(s){
e=t/s;
t-=e*s;
u-=e*v;
swap(t,s);
swap(u,v);
}
if(u<0){
u+=md;
}
return u;
}
void setmod(unsigned m){
int i;
unsigned t;
W = 32;
md = m;
R = (1ULL << W) % md;
RR = (unsigned long long)R*R % md;
switch(m){
case 104857601:
Rinv = 2560000;
mdninv = 104857599;
break;
case 998244353:
Rinv = 232013824;
mdninv = 998244351;
break;
case 1000000007:
Rinv = 518424770;
mdninv = 2226617417U;
break;
case 1000000009:
Rinv = 171601999;
mdninv = 737024967;
break;
case 1004535809:
Rinv = 234947584;
mdninv = 1004535807;
break;
case 1007681537:
Rinv = 236421376;
mdninv = 1007681535;
break;
case 1012924417:
Rinv = 238887936;
mdninv = 1012924415;
break;
case 1045430273:
Rinv = 254466304;
mdninv = 1045430271;
break;
case 1051721729:
Rinv = 257538304;
mdninv = 1051721727;
break;
default:
Rinv = get_inv(R, md);
mdninv = 0;
t = 0;
for(i=(0);i<((int)W);i++){
if(t%2==0){
t+=md;
mdninv |= (1U<<i);
}
t /= 2;
}
}
}
unsigned mulR(unsigned a){
return (unsigned long long)a*R%md;
}
unsigned mulR(int a){
if(a < 0){
a = a%((int)md)+(int)md;
}
return mulR((unsigned)a);
}
unsigned mulR(unsigned long long a){
return mulR((unsigned)(a%md));
}
unsigned mulR(long long a){
a %= md;
if(a < 0){
a += md;
}
return mulR((unsigned)a);
}
unsigned reduce(unsigned T){
unsigned m = T * mdninv;
unsigned t = (unsigned)((T + (unsigned long long)m*md) >> W);
if(t >= md){
t -= md;
}
return t;
}
unsigned reduce(unsigned long long T){
unsigned m = (unsigned)T * mdninv;
unsigned t = (unsigned)((T + (unsigned long long)m*md) >> W);
if(t >= md){
t -= md;
}
return t;
}
unsigned get(){
return reduce(val);
}
mint &operator+=(mint a){
val += a.val;
if(val >= md){
val -= md;
}
return *this;
}
mint &operator-=(mint a){
if(val < a.val){
val = val + md - a.val;
}
else{
val -= a.val;
}
return *this;
}
mint &operator*=(mint a){
val = reduce((unsigned long long)val*a.val);
return *this;
}
mint &operator/=(mint a){
return *this *= a.inverse();
}
mint operator+(mint a){
return mint(*this)+=a;
}
mint operator-(mint a){
return mint(*this)-=a;
}
mint operator*(mint a){
return mint(*this)*=a;
}
mint operator/(mint a){
return mint(*this)/=a;
}
mint operator+(int a){
return mint(*this)+=mint(a);
}
mint operator-(int a){
return mint(*this)-=mint(a);
}
mint operator*(int a){
return mint(*this)*=mint(a);
}
mint operator/(int a){
return mint(*this)/=mint(a);
}
mint operator+(long long a){
return mint(*this)+=mint(a);
}
mint operator-(long long a){
return mint(*this)-=mint(a);
}
mint operator*(long long a){
return mint(*this)*=mint(a);
}
mint operator/(long long a){
return mint(*this)/=mint(a);
}
mint operator-(void){
mint res;
if(val){
res.val=md-val;
}
else{
res.val=0;
}
return res;
}
operator bool(void){
return val!=0;
}
operator int(void){
return get();
}
operator long long(void){
return get();
}
mint inverse(){
int a = val;
int b = md;
int u = 1;
int v = 0;
int t;
mint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += md;
}
res.val = (unsigned long long)u*RR % md;
return res;
}
mint pw(unsigned long long b){
mint a(*this);
mint res;
res.val = R;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
bool operator==(int a){
return mulR(a)==val;
}
bool operator!=(int a){
return mulR(a)!=val;
}
}
;
unsigned mint::md;
unsigned mint::W;
unsigned mint::R;
unsigned mint::Rinv;
unsigned mint::mdninv;
unsigned mint::RR;
mint operator+(int a, mint b){
return mint(a)+=b;
}
mint operator-(int a, mint b){
return mint(a)-=b;
}
mint operator*(int a, mint b){
return mint(a)*=b;
}
mint operator/(int a, mint b){
return mint(a)/=b;
}
mint operator+(long long a, mint b){
return mint(a)+=b;
}
mint operator-(long long a, mint b){
return mint(a)-=b;
}
mint operator*(long long a, mint b){
return mint(a)*=b;
}
mint operator/(long long a, mint b){
return mint(a)/=b;
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void wt_L(char a){
putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
putchar_unlocked('-');
}
while(s--){
putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(mint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T> int Factor_L(T N, T fac[], int fs[]){
T i;
int sz = 0;
if(N%2==0){
fac[sz] = 2;
fs[sz] = 1;
N /= 2;
while(N%2==0){
N /= 2;
fs[sz]++;
}
sz++;
}
for(i=3;i*i<=N;i+=2){
if(N%i==0){
fac[sz] = i;
fs[sz] = 1;
N /= i;
while(N%i==0){
N /= i;
fs[sz]++;
}
sz++;
}
}
if(N > 1){
fac[sz] = N;
fs[sz] = 1;
sz++;
}
return sz;
}
template<class T> int Divisor_L(T N, T res[], void *mem = wmem){
int i;
int j;
int k;
int s;
int sz = 0;
T *fc;
int *fs;
int fsz;
walloc1d(&fc, 100, &mem);
walloc1d(&fs, 100, &mem);
fsz =Factor_L(N, fc, fs);
res[sz++] = 1;
for(i=(0);i<(fsz);i++){
s = sz;
k = s * fs[i];
for(j=(0);j<(k);j++){
res[sz++] = res[j] * fc[i];
}
}
sort(res, res+sz);
return sz;
}
struct combination_mint{
mint *fac;
mint *ifac;
void init(int n, void **mem = &wmem){
int i;
walloc1d(&fac, n, mem);
walloc1d(&ifac, n, mem);
fac[0] = 1;
for(i=(1);i<(n);i++){
fac[i] = fac[i-1] * i;
}
ifac[n-1] = 1 / fac[n-1];
for(i=n-2;i>=0;i--){
ifac[i] = ifac[i+1] * (i+1);
}
}
mint C(int a, int b){
if(b < 0 || b > a){
return 0;
}
return fac[a]*ifac[b]*ifac[a-b];
}
mint P(int a, int b){
if(b < 0 || b > a){
return 0;
}
return fac[a]*ifac[a-b];
}
mint H(int a, int b){
if(a==0 && b==0){
return 1;
}
if(a<=0 || b<0){
return 0;
}
return C(a+b-1, b);
}
}
;
int N;
int K;
int ys;
int y[10000];
int fs;
int f[10000];
int fn[10000];
int main(){
wmem = memarr;
{
mint x;
x.setmod(MD);
}
int i;
int j;
int k;
int g;
mint res;
combination_mint c;
rd(N);
rd(K);
c.init(N+1);
res = 0;
ys =Divisor_L(N,y);
for(i=(0);i<(ys);i++){
if(K%y[i]){
continue;
}
fs =Factor_L(y[i], f, fn);
if(fs==0){
continue;
}
for(j=(0);j<(fs);j++){
if(fn[j] > 1){
break;
}
}
if(j<fs){
continue;
}
if(fs%2==1){
res +=c.C(N/y[i], K/y[i]);
}
else{
res -=c.C(N/y[i], K/y[i]);
}
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20190919-1 [beta]
// --- original code ---
// int N, K;
// int ys, y[10000];
// int fs, f[10000], fn[10000];
// {
// int i, j, k, g;
// mint res;
// combination_mint c;
//
// rd(N,K);
// c.init(N+1);
//
// res = 0;
// ys = Divisor(N,y);
// rep(i,ys){
// if(K%y[i]) continue;
// fs = Factor(y[i], f, fn);
// if(fs==0) continue;
// rep(j,fs) if(fn[j] > 1) break;
// if(j<fs) continue;
// res if[fs%2==1, +=, -=] c.C(N/y[i], K/y[i]);
// }
//
// wt(res);
// }
LayCurse