結果
| 問題 |
No.890 移調の限られた旋法
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2019-09-20 21:40:14 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 186 ms / 2,000 ms |
| コード長 | 6,541 bytes |
| コンパイル時間 | 2,189 ms |
| コンパイル使用メモリ | 185,656 KB |
| 実行使用メモリ | 66,228 KB |
| 最終ジャッジ日時 | 2024-09-14 16:56:44 |
| 合計ジャッジ時間 | 6,694 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 32 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define POW2(n) (1LL << (n))
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
///// This part below is only for debug, not used /////
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
///// END /////
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/
// エラトステネスの篩で(int)N以下の素数格納vector作成
vector<int> makePrimeLst(int N)
{
vector<int> ans;
vector<int> alive(N+1, 1);
lint now = 2;
for (; now * now <= N; now++)
{
if (alive[now]) ans.push_back(now);
for (int t = now; t <= N; t += now) alive[t] = 0;
}
for (; now <= N; now++) if (alive[now]) ans.push_back(now);
return ans;
}
// 素因数分解
map<lint, int> primeFactorize(lint N, const vector<int> &primeLst)
{
map<lint, int> ans;
for (auto v : primeLst)
{
while (!(N % v))
{
N /= v;
ans[v]++;
}
if (N == 1) return ans;
}
ans[N]++;
return ans;
// exit(1);
}
vector<lint> divisor(lint n, const vector<int> &primeLst)
{
map<lint, int> factor = primeFactorize(n, primeLst);
vector<lint> now{1}, nxt;
for (auto pa : factor)
{
nxt.clear();
for (auto v : now)
{
REP(i, pa.second + 1)
{
nxt.push_back(v);
v *= pa.first;
}
}
swap(now, nxt);
}
return now;
}
int moebius(int NperD, vector<int>& primes)
{
map<lint, int> m = primeFactorize(NperD, primes);
int Max = 1;
for (auto v : m) Max = max(Max, v.second);
if (Max > 1) return 0;
else return ((int)(m.size()) & 1) ? -1 : 1;
}
constexpr lint MOD = 1000000007;
vector<lint> fac, facInv, inv;
void facInit(int nmax)
{
fac = facInv = inv = vector<lint>(nmax + 1, 1);
for (int i = 2; i <= nmax; i++)
{
fac[i] = fac[i-1] * i % MOD;
inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD;
facInv[i] = facInv[i-1] * inv[i] % MOD;
}
}
lint nCr(lint n, lint r)
{
if (n<r || r<0) return 0;
if (n >= (int)fac.size()) facInit(n);
return (fac[n] * facInv[r] % MOD) * facInv[n-r] % MOD;
}
lint nPr(lint n, lint r)
{
if (n<r || r<0) return 0;
if (n >= (int)fac.size()) facInit(n);
return fac[n] * facInv[n-r] % MOD;
}
lint power(lint x, lint n, lint mod=MOD)
{
lint ans = 1;
while (n>0)
{
if (n & 1) (ans *= x) %= mod;
(x *= x) %= mod;
n >>= 1;
}
return ans;
}
lint doublefac(lint n)
{
if (n < 0) return 0;
lint k = (n + 1) / 2;
if (n & 1) return fac[k * 2] * power(facInv[2], k) % MOD * power(fac[k], MOD - 2) % MOD;
else return fac[k] * power(facInv[2], k) % MOD;
}
int main()
{
lint N, K;
cin >> N >> K;
facInit(N * 2);
vector<int> primes = makePrimeLst(1000000);
vector<lint> v(N + 1);
FOR(c, 1, N + 1)
{
if (N % c or K % (N / c)) continue;
int t = N / c;
int u = K / t;
v[c] = nCr(c, u);
}
vector<lint> ret(N + 1);
FOR(c, 1, N + 1) if (N % c == 0)
{
vector<lint> divs = divisor(c, primes);
for (auto d : divs)
{
(ret[c] += (moebius(c / d, primes) * v[d] + MOD)) %= MOD;
}
}
cout << accumulate(ret.begin(), ret.begin() + N, 0LL) % MOD << endl;
}
hitonanode