結果

問題 No.890 移調の限られた旋法
ユーザー hitonanodehitonanode
提出日時 2019-09-20 21:40:14
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 186 ms / 2,000 ms
コード長 6,541 bytes
コンパイル時間 2,189 ms
コンパイル使用メモリ 185,656 KB
実行使用メモリ 66,228 KB
最終ジャッジ日時 2024-09-14 16:56:44
合計ジャッジ時間 6,694 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 25 ms
7,680 KB
testcase_01 AC 24 ms
7,808 KB
testcase_02 AC 24 ms
7,680 KB
testcase_03 AC 25 ms
7,552 KB
testcase_04 AC 25 ms
7,680 KB
testcase_05 AC 25 ms
7,680 KB
testcase_06 AC 25 ms
7,680 KB
testcase_07 AC 24 ms
7,808 KB
testcase_08 AC 25 ms
7,680 KB
testcase_09 AC 25 ms
7,680 KB
testcase_10 AC 25 ms
7,680 KB
testcase_11 AC 25 ms
7,680 KB
testcase_12 AC 24 ms
7,680 KB
testcase_13 AC 186 ms
66,228 KB
testcase_14 AC 178 ms
66,100 KB
testcase_15 AC 172 ms
66,224 KB
testcase_16 AC 174 ms
66,224 KB
testcase_17 AC 152 ms
59,872 KB
testcase_18 AC 154 ms
59,872 KB
testcase_19 AC 92 ms
36,508 KB
testcase_20 AC 66 ms
24,412 KB
testcase_21 AC 32 ms
10,880 KB
testcase_22 AC 127 ms
51,396 KB
testcase_23 AC 172 ms
62,236 KB
testcase_24 AC 96 ms
37,100 KB
testcase_25 AC 39 ms
13,696 KB
testcase_26 AC 160 ms
63,656 KB
testcase_27 AC 174 ms
64,684 KB
testcase_28 AC 113 ms
42,792 KB
testcase_29 AC 76 ms
28,920 KB
testcase_30 AC 164 ms
59,916 KB
testcase_31 AC 93 ms
35,600 KB
testcase_32 AC 147 ms
55,768 KB
testcase_33 AC 152 ms
58,760 KB
testcase_34 AC 151 ms
58,764 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long int;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((lint)(x).size())
#define POW2(n) (1LL << (n))
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template<typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template<typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template<typename T> bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template<typename T> bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template<typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template<typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template<typename T> istream &operator>>(istream &is, vector<T> &vec){ for (auto &v : vec) is >> v; return is; }
///// This part below is only for debug, not used /////
template<typename T> ostream &operator<<(ostream &os, const vector<T> &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const deque<T> &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; }
template<typename T> ostream &operator<<(ostream &os, const set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; }
template<typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
template<typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl;
///// END /////
/*
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
using namespace __gnu_pbds; // find_by_order(), order_of_key()
template<typename TK> using pbds_set = tree<TK, null_type, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
template<typename TK, typename TV> using pbds_map = tree<TK, TV, less<TK>, rb_tree_tag, tree_order_statistics_node_update>;
*/

// エラトステネスの篩で(int)N以下の素数格納vector作成
vector<int> makePrimeLst(int N)
{
    vector<int> ans;
    vector<int> alive(N+1, 1);
    lint now = 2;
    for (; now * now <= N; now++)
    {
        if (alive[now]) ans.push_back(now);
        for (int t = now; t <= N; t += now) alive[t] = 0;
    }
    for (; now <= N; now++) if (alive[now]) ans.push_back(now);
    return ans;
}

// 素因数分解
map<lint, int> primeFactorize(lint N, const vector<int> &primeLst)
{
    map<lint, int> ans;
    for (auto v : primeLst)
    {
        while (!(N % v))
        {
            N /= v;
            ans[v]++;
        }
        if (N == 1) return ans;
    }
    ans[N]++;
    return ans;
    // exit(1);
}

vector<lint> divisor(lint n, const vector<int> &primeLst)
{
    map<lint, int> factor = primeFactorize(n, primeLst);
    vector<lint> now{1}, nxt;
    for (auto pa : factor)
    {
        nxt.clear();
        for (auto v : now)
        {
            REP(i, pa.second + 1)
            {
                nxt.push_back(v);
                v *= pa.first;
            }
        }
        swap(now, nxt);
    }
    return now;
}

int moebius(int NperD, vector<int>& primes)
{
    map<lint, int> m = primeFactorize(NperD, primes);
    int Max = 1;
    for (auto v : m) Max = max(Max, v.second);
    if (Max > 1) return 0;
    else return ((int)(m.size()) & 1) ? -1 : 1;
}



constexpr lint MOD = 1000000007;
vector<lint> fac, facInv, inv;
void facInit(int nmax)
{
    fac = facInv = inv = vector<lint>(nmax + 1, 1);
    for (int i = 2; i <= nmax; i++)
    {
        fac[i] = fac[i-1] * i % MOD;
        inv[i] = MOD - inv[MOD%i] * (MOD/i) % MOD;
        facInv[i] = facInv[i-1] * inv[i] % MOD;
    }
}
lint nCr(lint n, lint r)
{
    if (n<r || r<0) return 0;
    if (n >= (int)fac.size()) facInit(n);
    return (fac[n] * facInv[r] % MOD) * facInv[n-r] % MOD;
}
lint nPr(lint n, lint r)
{
    if (n<r || r<0) return 0;
    if (n >= (int)fac.size()) facInit(n);
    return fac[n] * facInv[n-r] % MOD;
}
lint power(lint x, lint n, lint mod=MOD)
{
    lint ans = 1;
    while (n>0)
    {
        if (n & 1) (ans *= x) %= mod;
        (x *= x) %= mod;
       n >>= 1;
    }
   return ans;
}
lint doublefac(lint n)
{
    if (n < 0) return 0;
    lint k = (n + 1) / 2;
    if (n & 1) return fac[k * 2] * power(facInv[2], k) % MOD * power(fac[k], MOD - 2) % MOD;
    else return fac[k] * power(facInv[2], k) % MOD;
}

int main()
{
    lint N, K;
    cin >> N >> K;
    facInit(N * 2);
    vector<int> primes = makePrimeLst(1000000);

    vector<lint> v(N + 1);
    FOR(c, 1, N + 1)
    {
        if (N % c or K % (N / c)) continue;
        int t = N / c;
        int u = K / t;
        v[c] = nCr(c, u);
    }
    vector<lint> ret(N + 1);
    FOR(c, 1, N + 1) if (N % c == 0)
    {
        vector<lint> divs = divisor(c, primes);
        for (auto d : divs)
        {
            (ret[c] += (moebius(c / d, primes) * v[d] + MOD)) %= MOD;
        }
    }
    cout << accumulate(ret.begin(), ret.begin() + N, 0LL) % MOD << endl;
}
0