結果
| 問題 | 
                            No.890 移調の限られた旋法
                             | 
                    
| コンテスト | |
| ユーザー | 
                             convexineq
                         | 
                    
| 提出日時 | 2019-09-20 22:10:59 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                WA
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 1,170 bytes | 
| コンパイル時間 | 394 ms | 
| コンパイル使用メモリ | 82,244 KB | 
| 実行使用メモリ | 86,976 KB | 
| 最終ジャッジ日時 | 2024-09-14 17:54:00 | 
| 合計ジャッジ時間 | 5,563 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge6 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 WA * 2 | 
| other | AC * 11 WA * 21 | 
ソースコード
SIZE=1000000; MOD=10**9+7 #998244353 #ここを変更する
SIZE += 1
inv = [0]*SIZE  # inv[j] = j^{-1} mod MOD
fac = [0]*SIZE  # fac[j] = j! mod MOD
finv = [0]*SIZE # finv[j] = (j!)^{-1} mod MOD
inv[1] = 1
fac[0] = fac[1] = 1
finv[0] = finv[1] = 1
for i in range(2,SIZE):
    inv[i] = MOD - (MOD//i)*inv[MOD%i]%MOD
    fac[i] = fac[i-1]*i%MOD
    finv[i]= finv[i-1]*inv[i]%MOD
def choose(n,r): # nCk mod MOD の計算
    if 0 <= r <= n:
        return (fac[n]*finv[r]%MOD)*finv[n-r]%MOD
    else:
        return 0
        
from math import gcd
def divisor_list(N): #約数のリスト
    if N == 1: return [1]
    res = []
    for i in range(1,N):
        if i*i >= N: break
        if N%i == 0:
            res.append(i)
            res.append(N//i)
    if i*i == N: res.append(i)
    return sorted(res)
n,k = [int(i) for i in input().split()]
g = gcd(n,k)
if g == 1:
    print(0)
    exit()
div = divisor_list(n)
div = [i for i in div if g%i==0]
d = {i:choose(n//i,k//i) for i in div}
d[1] = 0
#print(d)
for i in reversed(div):
    for j in div:
        if j%i == 0 and i != j:
            d[i] -= d[j]
            d[i] %= MOD
#print(d)
print(-d[1])
            
            
            
        
            
convexineq