結果

問題 No.890 移調の限られた旋法
ユーザー jell
提出日時 2019-09-20 22:20:16
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 52 ms / 2,000 ms
コード長 19,071 bytes
コンパイル時間 7,346 ms
コンパイル使用メモリ 336,884 KB
実行使用メモリ 37,120 KB
最終ジャッジ日時 2024-09-14 18:08:46
合計ジャッジ時間 8,961 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 32
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifdef stderr_path
#define LOCAL
#define _GLIBCXX_DEBUG
#endif
#pragma GCC optimize("Ofast")
#include <algorithm>
#include <bitset>
#include <cassert>
#include <chrono>
#include <complex>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
// #define NDEBUG
#define debug_stream std::cerr
#define iostream_untie true
#define __precision__ 10
#define rep(i, n) for(int i = 0; i < int(n); ++i)
#define all(v) std::begin(v), std::end(v)
#define rall(v) std::rbegin(v), std::rend(v)
#define __odd(n) ((n)&1)
#define __even(n) (__odd(n) ^ 1)
#define __popcount(n) __builtin_popcountll(n)
#define __clz32(n) __builtin_clz(int32_t(n))
#define __clz64(n) __builtin_clzll(int64_t(n))
#define __ctz32(n) __builtin_ctz(int32_t(n))
#define __ctz64(n) __builtin_ctzll(int64_t(n))
using i64 = int_fast64_t;
using pii = std::pair<int, int>;
using pll = std::pair<int_fast64_t, int_fast64_t>;
template <class T>
using heap = std::priority_queue<T>;
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T>
constexpr T inf = std::numeric_limits<T>::max() / T(2) - T(1123456);
namespace execution
{
std::chrono::system_clock::time_point start_time, end_time;
void print_elapsed_time()
{
end_time = std::chrono::system_clock::now();
std::cerr << "\n----- Exec time : ";
std::cerr << std::chrono::duration_cast<std::chrono::milliseconds>(
end_time - start_time)
.count();
std::cerr << " ms -----\n\n";
}
struct setupper
{
setupper()
{
if(iostream_untie)
{
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
}
std::cout << std::fixed << std::setprecision(__precision__);
#ifdef stderr_path
if(freopen(stderr_path, "a", stderr))
{
std::cerr << std::fixed << std::setprecision(__precision__);
}
else
fclose(stderr);
#endif
#ifdef stdout_path
if(not freopen(stdout_path, "w", stdout))
{
freopen("CON", "w", stdout);
std::cerr << "Failed to open the stdout file\n\n";
}
std::cout << "";
#endif
#ifdef stdin_path
if(not freopen(stdin_path, "r", stdin))
{
freopen("CON", "r", stdin);
std::cerr << "Failed to open the stdin file\n\n";
}
#endif
#ifdef LOCAL
atexit(print_elapsed_time);
start_time = std::chrono::system_clock::now();
#endif
}
} __setupper;
} // namespace execution
class myclock_t
{
std::chrono::system_clock::time_point built_pt, last_pt;
int built_ln, last_ln;
std::string built_func, last_func;
bool is_built;
public:
explicit myclock_t() : is_built(false)
{}
void build(int crt_ln, const std::string &crt_func)
{
is_built = true;
last_pt = built_pt = std::chrono::system_clock::now();
last_ln = built_ln = crt_ln, last_func = built_func = crt_func;
}
void set(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
last_pt = std::chrono::system_clock::now();
last_ln = crt_ln, last_func = crt_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
<< "myclock_t::set failed (yet to be built!)\n";
}
}
void get(int crt_ln, const std::string &crt_func)
{
if(is_built)
{
std::chrono::system_clock::time_point crt_pt(
std::chrono::system_clock::now());
int64_t diff =
std::chrono::duration_cast<std::chrono::milliseconds>(crt_pt -
last_pt)
.count();
debug_stream << diff << " ms elapsed from"
<< " [ " << last_ln << " : " << last_func << " ]";
if(last_ln == built_ln) debug_stream << " (when built)";
debug_stream << " to"
<< " [ " << crt_ln << " : " << crt_func << " ]"
<< "\n";
last_pt = built_pt, last_ln = built_ln, last_func = built_func;
}
else
{
debug_stream << "[ " << crt_ln << " : " << crt_func << " ] "
<< "myclock_t::get failed (yet to be built!)\n";
}
}
};
#ifdef LOCAL
myclock_t __myclock;
#define build_clock() __myclock.build(__LINE__, __func__)
#define set_clock() __myclock.set(__LINE__, __func__)
#define get_clock() __myclock.get(__LINE__, __func__)
#else
#define build_clock() ((void)0)
#define set_clock() ((void)0)
#define get_clock() ((void)0)
#endif
namespace std
{
template <class RAitr>
void rsort(RAitr __first, RAitr __last)
{
sort(__first, __last, greater<>());
}
template <class T>
size_t hash_combine(size_t seed, T const &key)
{
return seed ^ (hash<T>()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2));
}
template <class T, class U>
struct hash<pair<T, U>>
{
size_t operator()(pair<T, U> const &pr) const
{
return hash_combine(hash_combine(0, pr.first), pr.second);
}
};
template <class tuple_t, size_t index = tuple_size<tuple_t>::value - 1>
struct tuple_hash_calc
{
static size_t apply(size_t seed, tuple_t const &t)
{
return hash_combine(
tuple_hash_calc<tuple_t, index - 1>::apply(seed, t),
get<index>(t));
}
};
template <class tuple_t>
struct tuple_hash_calc<tuple_t, 0>
{
static size_t apply(size_t seed, tuple_t const &t)
{
return hash_combine(seed, get<0>(t));
}
};
template <class... T>
struct hash<tuple<T...>>
{
size_t operator()(tuple<T...> const &t) const
{
return tuple_hash_calc<tuple<T...>>::apply(0, t);
}
};
template <class T, class U>
istream &operator>>(std::istream &s, pair<T, U> &p)
{
return s >> p.first >> p.second;
}
template <class T, class U>
ostream &operator<<(std::ostream &s, const pair<T, U> p)
{
return s << p.first << " " << p.second;
}
template <class T>
istream &operator>>(istream &s, vector<T> &v)
{
for(T &e : v)
{
s >> e;
}
return s;
}
template <class T>
ostream &operator<<(ostream &s, const vector<T> &v)
{
bool is_front = true;
for(const T &e : v)
{
if(not is_front)
{
s << ' ';
}
else
{
is_front = false;
}
s << e;
}
return s;
}
template <class tuple_t, size_t index>
struct tupleos
{
static ostream &apply(ostream &s, const tuple_t &t)
{
tupleos<tuple_t, index - 1>::apply(s, t);
return s << " " << get<index>(t);
}
};
template <class tuple_t>
struct tupleos<tuple_t, 0>
{
static ostream &apply(ostream &s, const tuple_t &t)
{
return s << get<0>(t);
}
};
template <class... T>
ostream &operator<<(ostream &s, const tuple<T...> &t)
{
return tupleos<tuple<T...>, tuple_size<tuple<T...>>::value - 1>::apply(
s, t);
}
template <>
ostream &operator<<(ostream &s, const tuple<> &t)
{
return s;
}
string revstr(string str)
{
reverse(str.begin(), str.end());
return str;
}
} // namespace std
#ifdef LOCAL
#define dump(...) \
debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \
dump_func(#__VA_ARGS__, __VA_ARGS__)
template <class T>
void dump_func(const char *ptr, const T &x)
{
debug_stream << '\t';
for(char c = *ptr; c != '\0'; c = *++ptr)
{
if(c != ' ') debug_stream << c;
}
debug_stream << " : " << x << '\n';
}
template <class T, class... rest_t>
void dump_func(const char *ptr, const T &x, rest_t... rest)
{
debug_stream << '\t';
for(char c = *ptr; c != ','; c = *++ptr)
{
if(c != ' ') debug_stream << c;
}
debug_stream << " : " << x << ",\n";
dump_func(++ptr, rest...);
}
#else
#define dump(...) ((void)0)
#endif
template <class P>
void read_range(P __first, P __second)
{
for(P i = __first; i != __second; ++i)
std::cin >> *i;
}
template <class P>
void write_range(P __first, P __second)
{
for(P i = __first; i != __second;
std::cout << (++i == __second ? '\n' : ' '))
{
std::cout << *i;
}
}
// substitute y for x.
template <class T>
void subst(T &x, const T &y)
{
x = y;
}
// substitue y for x iff x > y.
template <class T>
bool chmin(T &x, const T &y)
{
return x > y ? x = y, true : false;
}
// substitue y for x iff x < y.
template <class T>
bool chmax(T &x, const T &y)
{
return x < y ? x = y, true : false;
}
template <class T>
constexpr T minf(const T &x, const T &y)
{
return std::min(x, y);
}
template <class T>
constexpr T maxf(const T &x, const T &y)
{
return std::max(x, y);
}
// binary search.
template <class int_t, class F>
int_t bin(int_t ok, int_t ng, const F &f)
{
while(std::abs(ok - ng) > 1)
{
int_t mid = (ok + ng) / 2;
(f(mid) ? ok : ng) = mid;
}
return ok;
}
template <class T, class A, size_t N>
void init(A (&array)[N], const T &val)
{
std::fill((T *)array, (T *)(array + N), val);
}
void reset()
{}
template <class A, class... rest_t>
void reset(A &array, rest_t... rest)
{
memset(array, 0, sizeof(array));
reset(rest...);
}
// a integer uniformly and randomly chosen from the interval [l, r).
template <typename int_t>
int_t rand_int(int_t l, int_t r)
{
static std::random_device seed_gen;
static std::mt19937 engine(seed_gen());
std::uniform_int_distribution<int_t> unid(l, r - 1);
return unid(engine);
}
// a real number uniformly and randomly chosen from the interval [l, r).
template <typename real_t>
real_t rand_real(real_t l, real_t r)
{
static std::random_device seed_gen;
static std::mt19937 engine(seed_gen());
std::uniform_real_distribution<real_t> unid(l, r);
return unid(engine);
}
/* The main code follows. */
namespace math
{
template <int_fast32_t mod>
struct modint
{
int x;
constexpr modint() : x(0)
{}
constexpr modint(int_fast64_t y)
: x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod)
{}
constexpr modint &operator+=(const modint &p)
{
if((x += p.x) >= mod) x -= mod;
return *this;
}
constexpr modint &operator++()
{
return ++x, *this;
}
constexpr modint operator++(int)
{
modint t = *this;
return ++x, t;
}
constexpr modint &operator-=(const modint &p)
{
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
constexpr modint &operator--()
{
return --x, *this;
}
constexpr modint operator--(int)
{
modint t = *this;
return --x, t;
}
constexpr modint &operator*=(const modint &p)
{
return x = (int_fast64_t)x * p.x % mod, *this;
}
constexpr modint &operator/=(const modint &p)
{
return *this *= inverse(p);
}
// constexpr modint &operator%=(int m) { return x %= m, *this; }
constexpr modint operator-() const
{
return modint(-x);
}
constexpr modint operator+(const modint &p) const
{
return modint(*this) += p;
}
constexpr modint operator-(const modint &p) const
{
return modint(*this) -= p;
}
constexpr modint operator*(const modint &p) const
{
return modint(*this) *= p;
}
constexpr modint operator/(const modint &p) const
{
return modint(*this) /= p;
}
// constexpr modint operator%(int m) const { return modint(*this) %= m;
// }
constexpr bool operator==(const modint &p) const
{
return x == p.x;
}
constexpr bool operator!=(const modint &p) const
{
return x != p.x;
}
constexpr bool operator!() const
{
return !x;
}
// constexpr bool operator>(const modint &p) const { return x > p.x; }
// constexpr bool operator<(const modint &p) const { return x < p.x; }
// constexpr bool operator>=(const modint &p) const { return x >= p.x; }
// constexpr bool operator<=(const modint &p) const { return x <= p.x; }
constexpr friend modint inverse(const modint &p)
{
int a = p.x, b = mod, u = 1, v = 0;
while(b > 0)
{
int t = a / b;
a -= t * b;
a ^= b ^= a ^= b;
u -= t * v;
u ^= v ^= u ^= v;
}
return modint(u);
}
constexpr friend modint pow(modint p, int_fast64_t e)
{
if(e < 0) e = (e % (mod - 1) + mod - 1) % (mod - 1);
modint ret = 1;
while(e)
{
if(e & 1) ret *= p;
p *= p;
e >>= 1;
}
return ret;
}
friend std::ostream &operator<<(std::ostream &s, const modint &p)
{
return s << p.x;
}
friend std::istream &operator>>(std::istream &s, modint &p)
{
int_fast64_t x;
p = modint((s >> x, x));
return s;
}
};
} // namespace math
// require modint
namespace math
{
constexpr int mod = 1000000007;
constexpr int N = 2.2e5, N_max = 2.2e6;
struct impl
{
int_fast64_t _fact[N + 1], _invfact[N + 1], _inv[N + 1];
constexpr impl() : _fact(), _invfact(), _inv()
{
_fact[0] = 1;
for(int i = 1; i <= N; ++i)
_fact[i] = _fact[i - 1] * i % mod;
_inv[1] = 1;
for(int i = 2; i <= N && i < mod; ++i)
_inv[i] = mod - _inv[mod % i] * (mod / i) % mod;
_invfact[0] = 1;
for(int i = 1; i <= N && i < mod; ++i)
_invfact[i] = _invfact[i - 1] * _inv[i] % mod;
}
};
constexpr impl _impl;
int_fast64_t _dyn_fact[N_max + 1];
int_fast64_t _dyn_inv[N_max + 1];
int_fast64_t _dyn_invfact[N_max + 1];
int_fast64_t dyn_fact(int x)
{
assert(x <= N_max);
if(x < 0) return 0;
static int _size = 1;
for(int &i = _size; i <= x; ++i)
{
if(i <= N)
_dyn_fact[i] = _impl._fact[i];
else
_dyn_fact[i] = _dyn_fact[i - 1] * i % mod;
}
return _dyn_fact[x];
}
int_fast64_t dyn_invfact(int x)
{
assert(x <= N_max && x < mod);
if(x < 0) return 0;
static int _size = 1;
for(int &i = _size; i <= x; ++i)
{
if(i <= N)
{
_dyn_inv[i] = _impl._inv[i];
_dyn_invfact[i] = _impl._invfact[i];
}
else
{
_dyn_inv[i] = mod - _dyn_inv[mod % i] * (mod / i) % mod;
_dyn_invfact[i] = _dyn_invfact[i - 1] * _dyn_inv[i] % mod;
}
}
return _dyn_invfact[x];
}
modint<mod> fact(int x)
{
return x > N ? dyn_fact(x) : x < 0 ? 0 : _impl._fact[x];
}
modint<mod> invfact(int x)
{
return x > N ? dyn_invfact(x) : x < 0 ? 0 : _impl._invfact[x];
}
modint<mod> binom(int x, int y)
{
return fact(x) * invfact(y) * invfact(x - y);
}
modint<mod> perm(int x, int y)
{
return binom(x, y) * fact(y);
}
} // namespace math
namespace math
{
template <class int_t>
constexpr int_t gcd(int_t x, int_t y)
{
x = x > 0 ? x : -x, y = y > 0 ? y : -y;
while(y)
y ^= x ^= y ^= x %= y;
return x;
}
template <class int_t>
constexpr int_t lcm(int_t x, int_t y)
{
return x ? x / gcd(x, y) * y : 0;
}
// a tuple (g, x, y) s.t. g = gcd(a, b) && ax + by = g.
template <class int_t>
constexpr std::tuple<int_t, int_t, int_t> ext_gcd(int_t a, int_t b)
{
int_t sgn_a = a >= 0 ? 1 : (a = -a, 0),
sgn_b = b >= 0 ? 1 : (b = -b, 0);
int_t p = 1, q = 0, r = 0, s = 1;
while(b)
{
int_t t = a / b;
r ^= p ^= r ^= p -= t * r;
s ^= q ^= s ^= q -= t * s;
b ^= a ^= b ^= a %= b;
}
return std::tuple<int_t, int_t, int_t>(a, sgn_a ? p : -p,
sgn_b ? q : -q);
}
// a pair (x, y) s.t. "x mod y" is true iff "k mod m" && "l mod n" if exist, otherwise (-1, -1).
template <class int_t>
constexpr std::pair<int_t, int_t> mod_comp(int_t k, int_t m, int_t l,
int_t n)
{
assert(m > 0 and n > 0);
int_t g, x, y;
std::tie(g, x, y) = ext_gcd(m, n);
k += ((k %= m) < 0) * m, l += ((l %= n) < 0) * n;
int_t s = k / g, t = l / g, r = k % g;
if(r != l % g) return std::pair<int_t, int_t>(-1, -1);
int_t lcm = m / g * n;
return std::pair<int_t, int_t>(
(m * x % lcm * t % lcm + n * y % lcm * s % lcm + r + lcm * 2) % lcm,
lcm);
}
} // namespace math
using namespace std;
using namespace math;
signed main()
{
void __solve();
void __precalc();
unsigned int t = 1;
// cin >> t;
__precalc();
#ifdef LOCAL
t=3;
#endif
while(t--)
{
__solve();
}
}
void __precalc()
{}
void __solve()
{
using mint=modint<mod>;
int n,k; cin>>n>>k;
int g=gcd(n,k);
static mint f[1<<20];
for(int i=1; i<=g; i++)
{
if(g%i) f[i]=0;
else
{
f[i]=binom(n/i,k/i);
}
}
static bool isp[1<<20];
init(isp,true);
for(int i=2; i<=g; i++)
{
if(isp[i])
{
for(int k=1; k*i<=g; k++)
{
f[k]-=f[i*k];
isp[k*i]=false;
}
}
}
std::cout << binom(n,k)-f[1] << "\n";
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0