結果
問題 | No.890 移調の限られた旋法 |
ユーザー | FF256grhy |
提出日時 | 2019-09-20 23:23:53 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 24 ms / 2,000 ms |
コード長 | 4,814 bytes |
コンパイル時間 | 1,797 ms |
コンパイル使用メモリ | 172,668 KB |
実行使用メモリ | 11,392 KB |
最終ジャッジ日時 | 2024-09-14 20:11:35 |
合計ジャッジ時間 | 3,416 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge6 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 5 ms
11,224 KB |
testcase_01 | AC | 4 ms
11,264 KB |
testcase_02 | AC | 5 ms
11,264 KB |
testcase_03 | AC | 5 ms
11,136 KB |
testcase_04 | AC | 5 ms
11,264 KB |
testcase_05 | AC | 5 ms
11,264 KB |
testcase_06 | AC | 6 ms
11,124 KB |
testcase_07 | AC | 6 ms
11,136 KB |
testcase_08 | AC | 5 ms
11,136 KB |
testcase_09 | AC | 5 ms
11,136 KB |
testcase_10 | AC | 4 ms
11,264 KB |
testcase_11 | AC | 5 ms
11,228 KB |
testcase_12 | AC | 6 ms
11,252 KB |
testcase_13 | AC | 22 ms
11,264 KB |
testcase_14 | AC | 23 ms
11,304 KB |
testcase_15 | AC | 24 ms
11,136 KB |
testcase_16 | AC | 23 ms
11,348 KB |
testcase_17 | AC | 21 ms
11,096 KB |
testcase_18 | AC | 22 ms
11,264 KB |
testcase_19 | AC | 14 ms
11,240 KB |
testcase_20 | AC | 11 ms
11,264 KB |
testcase_21 | AC | 6 ms
11,236 KB |
testcase_22 | AC | 18 ms
11,136 KB |
testcase_23 | AC | 21 ms
11,264 KB |
testcase_24 | AC | 14 ms
11,264 KB |
testcase_25 | AC | 7 ms
11,264 KB |
testcase_26 | AC | 23 ms
11,264 KB |
testcase_27 | AC | 22 ms
11,264 KB |
testcase_28 | AC | 16 ms
11,264 KB |
testcase_29 | AC | 12 ms
11,136 KB |
testcase_30 | AC | 22 ms
11,228 KB |
testcase_31 | AC | 14 ms
11,264 KB |
testcase_32 | AC | 21 ms
11,388 KB |
testcase_33 | AC | 21 ms
11,264 KB |
testcase_34 | AC | 20 ms
11,392 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incID(i, l, r) for(LL i = (l) ; i < (r); ++i) #define incII(i, l, r) for(LL i = (l) ; i <= (r); ++i) #define decID(i, l, r) for(LL i = (r) - 1; i >= (l); --i) #define decII(i, l, r) for(LL i = (r) ; i >= (l); --i) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() template<typename T> bool setmin (T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template<typename T> bool setmax (T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; } LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); } LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); } template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); } template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; } #define bit(b, i) (((b) >> (i)) & 1) #define BC __builtin_popcountll #define SC static_cast #define SI(v) SC<int>(v.size()) #define SL(v) SC<LL >(v.size()) #define RF(e, v) for(auto & e: v) #define ef else if #define UR assert(false) // ---- ---- template<LL M> class ModInt { private: LL v = 0; public: ModInt() { } ModInt(LL vv) { setval(vv); } ModInt & setval(LL vv) { v = vv % M; if(v < 0) { v += M; } return (*this); } LL getval() const { return v; } ModInt & operator+=(const ModInt & b) { return setval(v + b.v); } ModInt & operator-=(const ModInt & b) { return setval(v - b.v); } ModInt & operator*=(const ModInt & b) { return setval(v * b.v); } ModInt & operator/=(const ModInt & b) { return setval(v * b.inv()); } ModInt & operator^=( LU b) { return setval(ex(v, b)); } ModInt operator+ ( ) const { return ModInt(+v); } ModInt operator- ( ) const { return ModInt(-v); } ModInt operator+ (const ModInt & b) const { return ModInt(v + b.v); } ModInt operator- (const ModInt & b) const { return ModInt(v - b.v); } ModInt operator* (const ModInt & b) const { return ModInt(v * b.v); } ModInt operator/ (const ModInt & b) const { return ModInt(v * b.inv()); } ModInt operator^ ( LU b) const { return ModInt(ex(v, b)); } LL inv() const { LL x = (ex_gcd(v, M).FI + M) % M; assert(v * x % M == 1); return x; } LL ex(LL a, LU b) const { LL D = 64, x[64], y = 1; inc(i, D) { if((b >> i) == 0) { D = i; break; } } inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % M; } inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= M; } } return y; } pair<LL, LL> ex_gcd(LL a, LL b) const { if(b == 0) { return MP(1, 0); } auto p = ex_gcd(b, a % b); return MP(p.SE, p.FI - (a / b) * p.SE); } }; template<LL M> ModInt<M> operator+(LL a, const ModInt<M> & b) { return b + a; } template<LL M> ModInt<M> operator-(LL a, const ModInt<M> & b) { return -b + a; } template<LL M> ModInt<M> operator*(LL a, const ModInt<M> & b) { return b * a; } template<LL M> ModInt<M> operator/(LL a, const ModInt<M> & b) { return a * b.inv(); } template<LL M> istream & operator>>(istream & is, ModInt<M> & b) { LL v; is >> v; b.setval(v); return is; } template<LL M> ostream & operator<<(ostream & os, const ModInt<M> & b) { return (os << b.getval()); } // ---- ---- vector<pair<LL, LL>> prime_factorization(LL x) { assert(x > 0); vector<pair<LL, LL>> f; for(LL i = 2; i <= x; i++) { if(i * i > x) { i = x; } if(x % i == 0) { f.EB(i, 0); while(x % i == 0) { f.back().SE++; x /= i; } } } return f; } // ---- typedef ModInt<1'000'000'007> MI; MI fact[1000001]; MI comb(LL x, LL y) { return fact[x] / (fact[y] * fact[x - y]); } MI mu(LL x) { auto pf = prime_factorization(x); RF(e, pf) { if(e.SE > 1) { return 0; } } return (SI(pf) % 2 == 0 ? +1 : -1); } LL n, k; MI f(LL x) { assert(n % x == 0); LL d = n / x; return (k % d == 0 ? comb(x, k / d) : 0); } MI g(LL x) { MI s = 0; inc1(d, x) { if(n % d == 0) { s += mu(n / d) * f(d); } } return s; } int main() { cin >> n >> k; incII(i, 0, n) { fact[i] = (i == 0 ? 1 : fact[i - 1] * i); } cout << comb(n, k) - g(n) << endl; return 0; }