結果

問題 No.890 移調の限られた旋法
ユーザー polyomino_24polyomino_24
提出日時 2019-09-20 23:33:20
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 123 ms / 2,000 ms
コード長 7,020 bytes
コンパイル時間 1,504 ms
コンパイル使用メモリ 137,964 KB
実行使用メモリ 50,432 KB
最終ジャッジ日時 2024-09-14 20:23:43
合計ジャッジ時間 5,478 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 108 ms
50,304 KB
testcase_01 AC 36 ms
50,176 KB
testcase_02 AC 110 ms
50,176 KB
testcase_03 AC 108 ms
50,176 KB
testcase_04 AC 109 ms
50,304 KB
testcase_05 AC 36 ms
50,176 KB
testcase_06 AC 109 ms
50,304 KB
testcase_07 AC 36 ms
50,432 KB
testcase_08 AC 36 ms
50,176 KB
testcase_09 AC 111 ms
50,304 KB
testcase_10 AC 36 ms
50,304 KB
testcase_11 AC 36 ms
50,176 KB
testcase_12 AC 113 ms
50,304 KB
testcase_13 AC 107 ms
50,304 KB
testcase_14 AC 36 ms
50,176 KB
testcase_15 AC 110 ms
50,176 KB
testcase_16 AC 116 ms
50,304 KB
testcase_17 AC 117 ms
50,176 KB
testcase_18 AC 123 ms
50,176 KB
testcase_19 AC 106 ms
50,304 KB
testcase_20 AC 35 ms
50,304 KB
testcase_21 AC 36 ms
50,432 KB
testcase_22 AC 105 ms
50,176 KB
testcase_23 AC 35 ms
50,304 KB
testcase_24 AC 107 ms
50,176 KB
testcase_25 AC 36 ms
50,176 KB
testcase_26 AC 109 ms
50,304 KB
testcase_27 AC 107 ms
50,304 KB
testcase_28 AC 36 ms
50,176 KB
testcase_29 AC 109 ms
50,432 KB
testcase_30 AC 110 ms
50,304 KB
testcase_31 AC 109 ms
50,304 KB
testcase_32 AC 109 ms
50,304 KB
testcase_33 AC 108 ms
50,304 KB
testcase_34 AC 106 ms
50,304 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <cassert>
#include <cctype>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstring>
#include <deque>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <string>
#include <tuple>
#include <vector>
#define rep(i, n) for (int i = 0; i < (int)(n); ++i)
//#define cerr if(false) cerr
#ifdef DEBUG
#define show(...) cerr << #__VA_ARGS__ << " = ", debug(__VA_ARGS__);
#else
#define show(...) 42
#endif
using namespace std;
using ll = long long;
using pii = pair<int, int>;
template <typename T, typename S>
ostream& operator<<(ostream& os, pair<T, S> a) {
    os << '(' << a.first << ',' << a.second << ')';
    return os;
}
template <typename T>
ostream& operator<<(ostream& os, vector<T> v) {
    for (auto x : v) os << x << ' ';
    return os;
}
void debug() {
    cerr << '\n';
}
template <typename H, typename... T>
void debug(H a, T... b) {
    cerr << a;
    if (sizeof...(b)) cerr << ", ";
    debug(b...);
}
template <typename T>
vector<T> divisor(T n) {
    vector<T> res;
    for (T i = 1; i * i <= n; i++) {
        if (n % i == 0) {
            res.push_back(i);
            if (i * i != n) {
                res.push_back(n / i);
            }
        }
    }
    sort(res.begin(), res.end());
    return res;
}
template <typename T>
map<T, int> prime_factor(T n) {
    map<T, int> res;
    for (T i = 2; i * i <= n; i++) {
        while (n % i == 0) {
            res[i]++;
            n /= i;
        }
    }
    if (n != 1) {
        res[n]++;
    }
    return res;
}
template <typename T>
T gcd(T a, T b) {
    while (b) {
        a %= b;
        swap(a, b);
    }
    return a;
}
template <typename T>
T lcm(T a, T b) {
    return a / gcd(a, b) * b;
}

//負の数を掛けたりするとバグる
template<int MOD>
class Modint{
public:
    int a;
    Modint(const long long v = 0):a(v % MOD){}
    int getmod() const{
        return MOD;
    }
    Modint operator+(const Modint rhs) const{
        return Modint(*this) += rhs;
    }
    Modint operator-(const Modint rhs) const{
        return Modint(*this) -= rhs;
    }
    Modint operator*(const Modint rhs) const{
        return Modint(*this) *= rhs;
    }
    Modint operator/(const Modint rhs) const{
        return Modint(*this) /= rhs;
    }
    Modint operator+(const long long rhs) const{
        return Modint(*this) += rhs;
    }
    Modint operator-(const long long rhs) const{
        return Modint(*this) -= rhs;
    }
    Modint operator*(const long long rhs) const{
        return Modint(*this) *= rhs;
    }
    Modint operator/(const long long rhs) const{
        return Modint(*this) /= rhs;
    }
    friend Modint operator+(const long long a, const Modint b){
        return b + a;
    }
    friend Modint operator-(const long long a, const Modint b){
        return -b + a;
    }
    friend Modint operator*(const long long a, const Modint b){
        return b * a;
    }
    friend Modint operator/(const long long a, const Modint b){
        return Modint(a) / b;
    }
    Modint &operator+=(const Modint rhs){
        a += rhs.a;
        if(a >= MOD){
            a -= MOD;
        }
        return *this;
    }
    Modint &operator-=(const Modint rhs){
        if(a < rhs.a){
            a += MOD;
        }
        a -= rhs.a;
        return *this;
    }
    Modint &operator*=(const Modint rhs){
        a = (long long)a * rhs.a % MOD;
        return *this;
    }
    Modint &operator/=(Modint rhs){
        int x = MOD - 2;
        while(x){
            if(x % 2){
                *this *= rhs;
            }
            rhs *= rhs;
            x /= 2;
        }
        return *this;
    }
    Modint &operator++(){
        *this += 1;
        return *this;
    }
    Modint &operator--(){
        *this -= 1;
        return *this;
    }
    Modint operator++(int){
        Modint res = *this;
        ++(*this);
        return res;
    }
    Modint operator--(int){
        Modint res = *this;
        --(*this);
        return res;
    }
    Modint &operator+=(const long long rhs){
        *this += Modint(rhs);
        return *this;
    }
    Modint &operator-=(const long long rhs){
        *this -= Modint(rhs);
        return *this;
    }
    Modint &operator*=(const long long rhs){
        *this *= Modint(rhs);
        return *this;
    }
    Modint &operator/=(const long long rhs){
        *this /= Modint(rhs);
        return *this;
    }
    Modint operator+() const{
        return *this;
    }
    Modint operator-() const{
        return Modint()-*this;
    }
    bool operator==(const Modint rhs) const{
        return a == rhs.a;
    }
    bool operator==(const long long rhs) const{
        return a == rhs;
    }
    friend bool operator==(const long long a, const Modint b){
        return a == b.a;
    }
    bool operator!=(const Modint rhs) const{
        return a != rhs.a;
    }
    bool operator!=(const long long rhs) const{
        return a != rhs;
    }
    friend ostream &operator<<(ostream &os, const Modint x){
        os << x.a;
        return os;
    }
    friend istream &operator>>(istream &is, Modint &x){
        is >> x.a;
        return is;
    }
    explicit operator bool() const{
        return a > 0;
    }
    bool operator!(){
        return a == 0;
    }
    explicit operator int() const{
        return a;
    }
    explicit operator long long() const{
        return (long long) a;
    }
    friend Modint pow(Modint a, long long b){
        Modint res = 1;
        while(b){
            if(b % 2){
                res *= a;
            }
            a *= a;
            b /= 2;
        }
        return res;
    }
};
using mint = Modint<1000000007>;
const int NUM = 4000005;
mint fact[NUM + 1], fact_inv[NUM + 1], inv[NUM + 1];
mint combi(long long N_, long long K_){
    static const int Mod_ = fact[0].getmod();
    if(fact[0] == 0){
        inv[1] = fact[0] = fact_inv[0] = 1;
        for(int i = 2; i <= NUM; i++){
            inv[i] = inv[Mod_ % i] * (Mod_ - Mod_ / i);
        }
        for(int i = 1; i <= NUM; i++){
            fact[i] = fact[i - 1] * i;
            fact_inv[i] = fact_inv[i - 1] * inv[i];
        }
    }
    if(K_ < 0 or K_ > N_) return 0;
    return fact_inv[K_] * fact[N_] * fact_inv[N_ - K_];
}
mint hcomb(long long N_, long long K_){
    return ((N_ | K_) == 0) ? 1 : combi(N_ + K_ - 1, K_);
}
int main(){
    int n, k;
    cin >> n >> k;
    auto d = divisor(n);
    mint ans = 0;
    bool f = true;
    for(int x : d){
        if(x == 1)continue;
        if(k % x)continue;
        int l = k / x;
        auto hoge = prime_factor(x);
        f = hoge.size() % 2;
        bool dame = false;
        for(auto aa:hoge)if(aa.second >1)dame = true;
        if(dame)continue;
        f = prime_factor(x).size() % 2;
        show(x, n/x, l, combi(n/x,l));
        if(f)ans += combi(n/x, l);
        else ans -= combi(n/x, l);
    }
    cout << ans << endl;
}
0