結果

問題 No.510 二次漸化式
ユーザー FF256grhy
提出日時 2019-09-21 04:06:03
言語 C++14
(gcc 8.3.0)
結果
AC  
実行時間 881 ms
コード長 7,694 Byte
コンパイル時間 2,221 ms
使用メモリ 85,448 KB
最終ジャッジ日時 2019-11-12 01:29:13

テストケース

テストケース表示
入力 結果 実行時間
使用メモリ
00_sample0.txt AC 3 ms
8,920 KB
00_sample1.txt AC 3 ms
6,876 KB
10_small0.txt AC 245 ms
6,876 KB
10_small1.txt AC 246 ms
6,872 KB
10_small2.txt AC 247 ms
6,872 KB
10_small3.txt AC 244 ms
6,872 KB
20_medsmall0.txt AC 384 ms
11,856 KB
20_medsmall1.txt AC 380 ms
11,860 KB
20_medsmall2.txt AC 385 ms
11,860 KB
20_medsmall3.txt AC 388 ms
11,860 KB
25_dense0.txt AC 127 ms
6,872 KB
25_dense1.txt AC 127 ms
6,872 KB
25_dense2.txt AC 127 ms
8,920 KB
25_dense3.txt AC 127 ms
6,876 KB
25_dense4.txt AC 127 ms
6,872 KB
25_dense5.txt AC 126 ms
6,876 KB
30_med0.txt AC 545 ms
85,444 KB
30_med1.txt AC 540 ms
85,448 KB
30_med2.txt AC 538 ms
85,444 KB
30_med3.txt AC 547 ms
85,444 KB
30_med4.txt AC 565 ms
85,448 KB
30_med5.txt AC 548 ms
85,444 KB
30_med6.txt AC 549 ms
85,448 KB
40_large0.txt AC 784 ms
85,444 KB
90_large0.txt AC 789 ms
85,448 KB
90_large1.txt AC 783 ms
85,444 KB
90_large2.txt AC 784 ms
85,444 KB
90_large3.txt AC 781 ms
85,448 KB
90_large4.txt AC 781 ms
85,448 KB
90_large5.txt AC 782 ms
85,448 KB
90_large6.txt AC 780 ms
85,444 KB
99_handmade0.txt AC 877 ms
85,248 KB
99_handmade1.txt AC 880 ms
85,448 KB
99_handmade2.txt AC 881 ms
85,444 KB
99_handmade3.txt AC 624 ms
85,448 KB
99_handmade4.txt AC 554 ms
85,444 KB
テストケース一括ダウンロード

ソースコード

diff #
#include <bits/stdc++.h>
using namespace std;
typedef long long   signed int LL;
typedef long long unsigned int LU;
#define incID(i, l, r) for(LL i = (l)    ; i <  (r); ++i)
#define incII(i, l, r) for(LL i = (l)    ; i <= (r); ++i)
#define decID(i, l, r) for(LL i = (r) - 1; i >= (l); --i)
#define decII(i, l, r) for(LL i = (r)    ; i >= (l); --i)
#define inc(i, n)  incID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec(i, n)  decID(i, 0, n)
#define dec1(i, n) decII(i, 1, n)
#define inID(v, l, r) ((l) <= (v) && (v) <  (r))
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define  ALL(v)  v.begin(),  v.end()
#define RALL(v) v.rbegin(), v.rend()
template<typename T> bool setmin  (T & a, T b) { if(b <  a) { a = b; return true; } else { return false; } }
template<typename T> bool setmax  (T & a, T b) { if(b >  a) { a = b; return true; } else { return false; } }
template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } }
template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } }
LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; }
LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }
LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }
template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
#define bit(b, i) (((b) >> (i)) & 1)
#define BC __builtin_popcountll
#define SC static_cast
#define SI(v) SC<int>(v.size())
#define SL(v) SC<LL >(v.size())
#define RF(e, v) for(auto & e: v)
#define ef else if
#define UR assert(false)

// ---- ----

template<typename T> class SegmentTree {
private:
	int n, s;
	vector<T> a;
	function<T(T, T)> f;
	T e;
	bool ok;
public:
	SegmentTree() { n = 0; }
	SegmentTree(int nn, function<T(T, T)> ff, T ee) { init(nn, ff, ee); }
	void init(int nn, function<T(T, T)> ff, T ee) {
		n = nn;
		f = ff;
		e = ee;
		s = 1;
		while(s < n) { s *= 2; }
		a = vector<T>(2 * s, e);
		ok = true;
	}
	void shift(int & p) {
		assert(inID(p, 0, n));
		p += s;
	}
	void apply(int p, function<void(T &)> g) {
		shift(p);
		g(a[p]);
		while(p > 1) {
			p /= 2;
			a[p] = f(a[2 * p], a[2 * p + 1]);
		}
	}
	T fold_ID(int l, int r) {
		assert(ok);
		assert(inII(l, 0, n)); l += s;
		assert(inII(r, 0, n)); r += s; r--;
		T x = e, y = e;
		while(l <= r) {
			if(l % 2 == 1) { x = f(x, a[l]); l++; }
			if(r % 2 == 0) { y = f(a[r], y); r--; }
			l /= 2;
			r /= 2;
		}
		return f(x, y);
	}
	T fold_II(int l, int r) { return fold_ID(l + 0, r + 1); }
	T fold_CI(int l, int r) { return fold_ID(l + 1, r + 1); }
	T fold_CD(int l, int r) { return fold_ID(l + 1, r + 0); }
	const T & operator[](int p) {
		shift(p);
		return a[p];
	}
	T & ref(int p) {
		shift(p);
		ok = false;
		return a[p];
	}
	void update() {
		dec(i, s) { a[i] = f(a[2 * i], a[2 * i + 1]); }
		ok = true;
	}
};
#define OP(s) [&](auto A, auto B) { return s; }
#define AP(s) [&](auto & A) { s; }

// ---- ----

template<typename T, int N> struct Matrix {
	vector<vector<T>> a;
	Matrix(const vector<vector<T>> & v = { }) { init(v); }
	void init(const vector<vector<T>> & v) {
		a = vector<vector<T>>(N, vector<T>(N, 0));
		assert(v.size() <= N);
		inc(i, v.size()) { assert(v[i].size() <= N);
		inc(j, v[i].size()) {
			a[i][j] = v[i][j];
		}
		}
	}
	vector<T> & operator[](int i) { return a[i]; }
	Matrix id() {
		Matrix e;
		inc(i, N) { e[i][i] = 1; }
		return e;
	}
	Matrix tp() {
		Matrix b;
		inc(i, N) {
		inc(j, N) {
			b[j][i] = a[i][j];
		}
		}
		return b;
	}
	Matrix & operator+=(const Matrix & b) {
		inc(i, N) {
		inc(j, N) {
			a[i][j] += b.a[i][j];
		}
		}
		return (*this);
	}
	Matrix & operator*=(T b) {
		inc(i, N) {
		inc(j, N) {
			a[i][j] *= b;
		}
		}
		return (*this);
	}
	Matrix & operator*=(const Matrix & b) {
		Matrix c;
		inc(i, N) {
		inc(j, N) {
		inc(k, N) {
			c[i][j] += a[i][k] * b.a[k][j];
		}
		}
		}
		return (*this) = c;
	}
	Matrix & operator^=(LU b) {
		Matrix t[64], c = id();
		int D = 64;
		inc(i, D) { if((b >> i) == 0) { D = i; break; } }
		inc(i, D) { t[i] = (i == 0 ? (*this) : t[i - 1] * t[i - 1]); }
		inc(i, D) { if((b >> i) & 1) { c *= t[i]; } }
		return (*this) = c;
	}
	Matrix operator+(const Matrix & b) const { Matrix c = a; return c += b; }
	Matrix operator*(             T b) const { Matrix c = a; return c *= b; }
	Matrix operator*(const Matrix & b) const { Matrix c = a; return c *= b; }
	Matrix operator^(            LU b) const { Matrix c = a; return c ^= b; }
};
template<typename T, int N> Matrix<T, N> operator*(T a, const Matrix<T, N> & b) { return b * a; }
template<typename T, int N> ostream & operator<<(ostream & os, const Matrix<T, N> & m) {
	inc(i, N) {
	inc(j, N) {
		os << m.a[i][j] << " ";
	} os << endl;
	}
	return os;
}

// ---- ----

template<LL M> class ModInt {
private:
	LL v = 0;
public:
	ModInt() { }
	ModInt(LL vv) { setval(vv); }
	ModInt & setval(LL vv) { v = vv % M; if(v < 0) { v += M; } return (*this); }
	LL getval() const { return v; }
	ModInt & operator+=(const ModInt & b)       { return setval(v + b.v); }
	ModInt & operator-=(const ModInt & b)       { return setval(v - b.v); }
	ModInt & operator*=(const ModInt & b)       { return setval(v * b.v); }
	ModInt & operator/=(const ModInt & b)       { return setval(v * b.inv()); }
	ModInt & operator^=(            LU b)       { return setval(ex(v, b)); }
	ModInt   operator+ (                ) const { return ModInt(+v); }
	ModInt   operator- (                ) const { return ModInt(-v); }
	ModInt   operator+ (const ModInt & b) const { return ModInt(v + b.v); }
	ModInt   operator- (const ModInt & b) const { return ModInt(v - b.v); }
	ModInt   operator* (const ModInt & b) const { return ModInt(v * b.v); }
	ModInt   operator/ (const ModInt & b) const { return ModInt(v * b.inv()); }
	ModInt   operator^ (            LU b) const { return ModInt(ex(v, b)); }
	LL inv() const {
		LL x = (ex_gcd(v, M).FI + M) % M;
		assert(v * x % M == 1);
		return x;
	}
	LL ex(LL a, LU b) const {
		LL D = 64, x[64], y = 1;
		inc(i, D) { if((b >> i) == 0) { D = i; break; } }
		inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % M; }
		inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= M; } }
		return y;
	}
	pair<LL, LL> ex_gcd(LL a, LL b) const {
		if(b == 0) { return MP(1, 0); }
		auto p = ex_gcd(b, a % b);
		return MP(p.SE, p.FI - (a / b) * p.SE);
	}
};
template<LL M> ModInt<M> operator+(LL a, const ModInt<M> & b) { return  b + a; }
template<LL M> ModInt<M> operator-(LL a, const ModInt<M> & b) { return -b + a; }
template<LL M> ModInt<M> operator*(LL a, const ModInt<M> & b) { return  b * a; }
template<LL M> ModInt<M> operator/(LL a, const ModInt<M> & b) { return  a * b.inv(); }
template<LL M> istream & operator>>(istream & is, ModInt<M> & b) { LL v; is >> v; b.setval(v); return is; }
template<LL M> ostream & operator<<(ostream & os, const ModInt<M> & b) { return (os << b.getval()); }

// ---- ----

typedef ModInt<1'000'000'007> MI;
typedef Matrix<MI, 4> MM;

int main() {
	int n, q;
	cin >> n >> q;
	
	SegmentTree<MM> st(n, OP(B * A), MM().id());
	
	inc(i, n) { st.ref(i).init({ {1}, {0, 1}, {1}, {1} }); }
	st.update();
	
	inc(qq, q) {
		char c; LL i, v;
		cin >> c;
		
		if(c == 'x') {
			cin >> i >> v;
			st.apply(i, AP(A.a[1][3] = v));
		}
		if(c == 'y') {
			cin >> i >> v;
			st.apply(i, AP(
				A.a[2][2] = v;
				A.a[3][2] = 2 * v;
				A.a[3][3] = v * v;
			));
		}
		if(c == 'a') {
			cin >> i;
			cout << (st.fold_ID(0, i) * MM({ {1}, {1}, {1}, {1} }))[1][0] << "\n";
		}
	}
	
	return 0;
}
0