結果

問題 No.890 移調の限られた旋法
ユーザー LayCurseLayCurse
提出日時 2019-09-21 11:50:13
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 23 ms / 2,000 ms
コード長 8,950 bytes
コンパイル時間 2,383 ms
コンパイル使用メモリ 218,492 KB
実行使用メモリ 12,036 KB
最終ジャッジ日時 2024-09-17 15:21:53
合計ジャッジ時間 3,651 ms
ジャッジサーバーID
(参考情報)
judge6 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 1 ms
6,940 KB
testcase_03 AC 2 ms
6,944 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 1 ms
6,944 KB
testcase_08 AC 2 ms
6,944 KB
testcase_09 AC 1 ms
6,944 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,944 KB
testcase_12 AC 1 ms
6,944 KB
testcase_13 AC 23 ms
11,616 KB
testcase_14 AC 21 ms
11,764 KB
testcase_15 AC 22 ms
11,640 KB
testcase_16 AC 21 ms
12,036 KB
testcase_17 AC 21 ms
10,688 KB
testcase_18 AC 19 ms
11,920 KB
testcase_19 AC 12 ms
8,428 KB
testcase_20 AC 9 ms
6,944 KB
testcase_21 AC 3 ms
6,944 KB
testcase_22 AC 16 ms
10,200 KB
testcase_23 AC 21 ms
11,804 KB
testcase_24 AC 12 ms
8,988 KB
testcase_25 AC 4 ms
6,940 KB
testcase_26 AC 22 ms
11,456 KB
testcase_27 AC 21 ms
11,920 KB
testcase_28 AC 14 ms
9,612 KB
testcase_29 AC 10 ms
7,440 KB
testcase_30 AC 20 ms
11,548 KB
testcase_31 AC 12 ms
7,708 KB
testcase_32 AC 18 ms
10,076 KB
testcase_33 AC 19 ms
10,876 KB
testcase_34 AC 19 ms
11,808 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD 1000000007
void *wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
  static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
  (*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
  (*arr)=(T*)(*mem);
  (*mem)=((*arr)+x);
}
struct mint{
  static unsigned md;
  static unsigned W;
  static unsigned R;
  static unsigned Rinv;
  static unsigned mdninv;
  static unsigned RR;
  unsigned val;
  mint(){
  }
  mint(int a){
    val = mulR(a);
  }
  mint(unsigned a){
    val = mulR(a);
  }
  mint(long long a){
    val = mulR(a);
  }
  mint(unsigned long long a){
    val = mulR(a);
  }
  int get_inv(long long a, int md){
    long long t=a;
    long long s=md;
    long long u=1;
    long long v=0;
    long long e;
    while(s){
      e=t/s;
      t-=e*s;
      u-=e*v;
      swap(t,s);
      swap(u,v);
    }
    if(u<0){
      u+=md;
    }
    return u;
  }
  void setmod(unsigned m){
    int i;
    unsigned t;
    W = 32;
    md = m;
    R = (1ULL << W) % md;
    RR = (unsigned long long)R*R % md;
    switch(m){
      case 104857601:
      Rinv = 2560000;
      mdninv = 104857599;
      break;
      case 998244353:
      Rinv = 232013824;
      mdninv = 998244351;
      break;
      case 1000000007:
      Rinv = 518424770;
      mdninv = 2226617417U;
      break;
      case 1000000009:
      Rinv = 171601999;
      mdninv = 737024967;
      break;
      case 1004535809:
      Rinv = 234947584;
      mdninv = 1004535807;
      break;
      case 1007681537:
      Rinv = 236421376;
      mdninv = 1007681535;
      break;
      case 1012924417:
      Rinv = 238887936;
      mdninv = 1012924415;
      break;
      case 1045430273:
      Rinv = 254466304;
      mdninv = 1045430271;
      break;
      case 1051721729:
      Rinv = 257538304;
      mdninv = 1051721727;
      break;
      default:
      Rinv = get_inv(R, md);
      mdninv = 0;
      t = 0;
      for(i=(0);i<((int)W);i++){
        if(t%2==0){
          t+=md;
          mdninv |= (1U<<i);
        }
        t /= 2;
      }
    }
  }
  unsigned mulR(unsigned a){
    return (unsigned long long)a*R%md;
  }
  unsigned mulR(int a){
    if(a < 0){
      a = a%((int)md)+(int)md;
    }
    return mulR((unsigned)a);
  }
  unsigned mulR(unsigned long long a){
    return mulR((unsigned)(a%md));
  }
  unsigned mulR(long long a){
    a %= md;
    if(a < 0){
      a += md;
    }
    return mulR((unsigned)a);
  }
  unsigned reduce(unsigned T){
    unsigned m = T * mdninv;
    unsigned t = (unsigned)((T + (unsigned long long)m*md) >> W);
    if(t >= md){
      t -= md;
    }
    return t;
  }
  unsigned reduce(unsigned long long T){
    unsigned m = (unsigned)T * mdninv;
    unsigned t = (unsigned)((T + (unsigned long long)m*md) >> W);
    if(t >= md){
      t -= md;
    }
    return t;
  }
  unsigned get(){
    return reduce(val);
  }
  mint &operator+=(mint a){
    val += a.val;
    if(val >= md){
      val -= md;
    }
    return *this;
  }
  mint &operator-=(mint a){
    if(val < a.val){
      val = val + md - a.val;
    }
    else{
      val -= a.val;
    }
    return *this;
  }
  mint &operator*=(mint a){
    val = reduce((unsigned long long)val*a.val);
    return *this;
  }
  mint &operator/=(mint a){
    return *this *= a.inverse();
  }
  mint operator+(mint a){
    return mint(*this)+=a;
  }
  mint operator-(mint a){
    return mint(*this)-=a;
  }
  mint operator*(mint a){
    return mint(*this)*=a;
  }
  mint operator/(mint a){
    return mint(*this)/=a;
  }
  mint operator+(int a){
    return mint(*this)+=mint(a);
  }
  mint operator-(int a){
    return mint(*this)-=mint(a);
  }
  mint operator*(int a){
    return mint(*this)*=mint(a);
  }
  mint operator/(int a){
    return mint(*this)/=mint(a);
  }
  mint operator+(long long a){
    return mint(*this)+=mint(a);
  }
  mint operator-(long long a){
    return mint(*this)-=mint(a);
  }
  mint operator*(long long a){
    return mint(*this)*=mint(a);
  }
  mint operator/(long long a){
    return mint(*this)/=mint(a);
  }
  mint operator-(void){
    mint res;
    if(val){
      res.val=md-val;
    }
    else{
      res.val=0;
    }
    return res;
  }
  operator bool(void){
    return val!=0;
  }
  operator int(void){
    return get();
  }
  operator long long(void){
    return get();
  }
  mint inverse(){
    int a = val;
    int b = md;
    int u = 1;
    int v = 0;
    int t;
    mint res;
    while(b){
      t = a / b;
      a -= t * b;
      swap(a, b);
      u -= t * v;
      swap(u, v);
    }
    if(u < 0){
      u += md;
    }
    res.val = (unsigned long long)u*RR % md;
    return res;
  }
  mint pw(unsigned long long b){
    mint a(*this);
    mint res;
    res.val = R;
    while(b){
      if(b&1){
        res *= a;
      }
      b >>= 1;
      a *= a;
    }
    return res;
  }
  bool operator==(int a){
    return mulR(a)==val;
  }
  bool operator!=(int a){
    return mulR(a)!=val;
  }
}
;
unsigned mint::md;
unsigned mint::W;
unsigned mint::R;
unsigned mint::Rinv;
unsigned mint::mdninv;
unsigned mint::RR;
mint operator+(int a, mint b){
  return mint(a)+=b;
}
mint operator-(int a, mint b){
  return mint(a)-=b;
}
mint operator*(int a, mint b){
  return mint(a)*=b;
}
mint operator/(int a, mint b){
  return mint(a)/=b;
}
mint operator+(long long a, mint b){
  return mint(a)+=b;
}
mint operator-(long long a, mint b){
  return mint(a)-=b;
}
mint operator*(long long a, mint b){
  return mint(a)*=b;
}
mint operator/(long long a, mint b){
  return mint(a)/=b;
}
inline void rd(int &x){
  int k;
  int m=0;
  x=0;
  for(;;){
    k = getchar_unlocked();
    if(k=='-'){
      m=1;
      break;
    }
    if('0'<=k&&k<='9'){
      x=k-'0';
      break;
    }
  }
  for(;;){
    k = getchar_unlocked();
    if(k<'0'||k>'9'){
      break;
    }
    x=x*10+k-'0';
  }
  if(m){
    x=-x;
  }
}
inline void wt_L(char a){
  putchar_unlocked(a);
}
inline void wt_L(int x){
  int s=0;
  int m=0;
  char f[10];
  if(x<0){
    m=1;
    x=-x;
  }
  while(x){
    f[s++]=x%10;
    x/=10;
  }
  if(!s){
    f[s++]=0;
  }
  if(m){
    putchar_unlocked('-');
  }
  while(s--){
    putchar_unlocked(f[s]+'0');
  }
}
inline void wt_L(mint x){
  int i;
  i = (int)x;
  wt_L(i);
}
template<class T> int Factor_L(T N, T fac[], int fs[]){
  T i;
  int sz = 0;
  if(N%2==0){
    fac[sz] = 2;
    fs[sz] = 1;
    N /= 2;
    while(N%2==0){
      N /= 2;
      fs[sz]++;
    }
    sz++;
  }
  for(i=3;i*i<=N;i+=2){
    if(N%i==0){
      fac[sz] = i;
      fs[sz] = 1;
      N /= i;
      while(N%i==0){
        N /= i;
        fs[sz]++;
      }
      sz++;
    }
  }
  if(N > 1){
    fac[sz] = N;
    fs[sz] = 1;
    sz++;
  }
  return sz;
}
template<class T> int Divisor_L(T N, T res[], void *mem = wmem){
  int i;
  int j;
  int k;
  int s;
  int sz = 0;
  T *fc;
  int *fs;
  int fsz;
  walloc1d(&fc, 100, &mem);
  walloc1d(&fs, 100, &mem);
  fsz =Factor_L(N, fc, fs);
  res[sz++] = 1;
  for(i=(0);i<(fsz);i++){
    s = sz;
    k = s * fs[i];
    for(j=(0);j<(k);j++){
      res[sz++] = res[j] * fc[i];
    }
  }
  sort(res, res+sz);
  return sz;
}
template<class T> int Moebius_L(T n){
  T i;
  int res = 1;
  if(n%4==0){
    return 0;
  }
  if(n%2==0){
    n /= 2;
    res = -res;
  }
  for(i=3;i*i<=n;i+=2){
    if(n%i==0){
      n /= i;
      res = -res;
    }
    if(n%i==0){
      return 0;
    }
  }
  if(n > 1){
    res = -res;
  }
  return res;
}
template<class T> inline T GCD_L(T a,T b){
  T r;
  while(a){
    r=b;
    b=a;
    a=r%a;
  }
  return b;
}
struct combination_mint{
  mint *fac;
  mint *ifac;
  void init(int n, void **mem = &wmem){
    int i;
    walloc1d(&fac, n, mem);
    walloc1d(&ifac, n, mem);
    fac[0] = 1;
    for(i=(1);i<(n);i++){
      fac[i] = fac[i-1] * i;
    }
    ifac[n-1] = 1 / fac[n-1];
    for(i=n-2;i>=0;i--){
      ifac[i] = ifac[i+1] * (i+1);
    }
  }
  mint C(int a, int b){
    if(b < 0 || b > a){
      return 0;
    }
    return fac[a]*ifac[b]*ifac[a-b];
  }
  mint P(int a, int b){
    if(b < 0 || b > a){
      return 0;
    }
    return fac[a]*ifac[a-b];
  }
  mint H(int a, int b){
    if(a==0 && b==0){
      return 1;
    }
    if(a<=0 || b<0){
      return 0;
    }
    return C(a+b-1, b);
  }
}
;
int ys;
int y[10000];
int main(){
  int i;
  wmem = memarr;
  {
    mint x;
    x.setmod(MD);
  }
  int N;
  int K;
  mint res;
  combination_mint c;
  rd(N);
  rd(K);
  c.init(N+1);
  res = 0;
  ys =Divisor_L(GCD_L(N, K),y);
  for(i=(1);i<(ys);i++){
    res -=Moebius_L(y[i])* c.C(N/y[i], K/y[i]);
  }
  wt_L(res);
  wt_L('\n');
  return 0;
}
// cLay varsion 20190921-1

// --- original code ---
// int ys, y[1d4];
// {
//   int N, K;
//   mint res;
//   combination_mint c;
// 
//   rd(N,K);
//   c.init(N+1);
// 
//   res = 0;
//   ys = Divisor(gcd(N,K),y);
//   rep(i,1,ys) res -= Moebius(y[i]) * c.C(N/y[i], K/y[i]);
//   wt(res);
// }
0