結果
| 問題 |
No.167 N^M mod 10
|
| ユーザー |
|
| 提出日時 | 2019-09-22 23:51:05 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 13,825 bytes |
| コンパイル時間 | 2,232 ms |
| コンパイル使用メモリ | 187,060 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-09-19 03:48:32 |
| 合計ジャッジ時間 | 3,671 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 20 WA * 7 |
ソースコード
// includes
#include <bits/stdc++.h>
using namespace std;
// macros
#define pb emplace_back
#define mk make_pair
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define bit(n) (1LL<<(n))
// functions
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
// types
using ll = long long int;
using P = pair<int, int>;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1000000007;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, -1, 0, 1};
// io
struct fast_io{
fast_io(){ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20);}
} fast_io_;
using cd = complex<double>;
// f.size() should be the power of 2.
void rec_fft(vector<cd> &f, bool inv=false){
int n = f.size();
if(n == 1)return;
vector<cd> f0(n / 2), f1(n / 2);
for(int i = 0; i < n / 2; i++){
f0[i] = f[i * 2];
f1[i] = f[i * 2 + 1];
}
rec_fft(f0, inv);
rec_fft(f1, inv);
double th = M_PI * 2 / n;
if(inv)th = - th;
cd u(cos(th), sin(th)), ui(1, 0);
for(int i = 0; i < n; i++){
f[i] = f0[i%(n/2)] + ui * f1[i%(n/2)];
ui = ui * u;
}
}
// f.size() should be the power of 2.
void fft(vector<cd> &f, bool inv=false){
int n = f.size(), mask = n - 1;
vector<cd> tmp(n);
for(int i = n >> 1; i >= 1; i >>= 1){
cd zeta = polar(1., 2. * M_PI * i * (inv ? -1.: 1.) / n);
cd w = 1;
for(int j = 0; j < n; j += i){
for(int k = 0; k < i; k++){
tmp[j + k] = f[((j<<1)&mask) + k] + w * f[(((j<<1)+i)&mask)+k];
}
w *= zeta;
}
swap(f, tmp);
}
}
void dft(vector<cd> &f){
fft(f);
}
void idft(vector<cd> &f){
fft(f, true);
for(size_t i = 0; i < f.size(); i++)f[i] = f[i] / cd(f.size());
}
template <typename T>
vector<T> convolution(const vector<T> &f, const vector<T> &g){
int n = 1;
while(n < 2 * f.size() + 1)n *= 2;
vector<cd> F(n, 0), G(n, 0);
for(int i = 0; i < f.size(); i++)F[i] = cd(f[i]);
for(int i = 0; i < g.size(); i++)G[i] = cd(g[i]);
dft(F);
dft(G);
vector<cd> H(n);
for(int i = 0; i < n; i++)H[i] = F[i] * G[i];
idft(H);
vector<T> h(n);
for(int i = 0; i < n; i++){
h[i] = T(round(H[i].real()));
}
return h;
}
vector<ll> convert_base(const vector<ll> &v, int old_b, int new_b){
vector<ll> p(max(new_b, old_b) + 1);
p[0] = 1;
for(int i = 1; i < p.size(); i++)p[i] = p[i-1] * 10;
vector<ll> res;
ll curr = 0;
int curr_b = 0;
for(int i = 0; i < v.size(); i++){
curr += v[i] * p[curr_b];
curr_b += old_b;
while(curr_b >= new_b){
res.push_back(curr % p[new_b]);
curr /= p[new_b];
curr_b -= new_b;
}
}
res.push_back(curr);
while(!res.empty() && res.back() == 0)res.pop_back();
return res;
}
vector<ll> simple_multiply(const vector<ll> &x, const vector<ll> &y){
vector<ll> res(x.size() + y.size() - 1, 0);
for(int i = 0; i < x.size(); i++){
for(int j = 0; j < y.size(); j++){
res[i+j] += x[i] * y[j];
}
}
while(!res.empty() && res.back() == 0)res.pop_back();
return res;
}
vector<ll> fft_multiply(const vector<ll> &x, const vector<ll> &y){
int n = max(x.size(), y.size());
vector<ll> a = x, b = y;
a.resize(n, 0);
b.resize(n, 0);
vector<ll> conv = convolution<ll>(a, b);
while(!conv.empty() && conv.back() == 0)conv.pop_back();
return conv;
}
vector<ll> karatsuba_multiply(const vector<ll> &x, const vector<ll> &y){
int n = max(x.size(), y.size());
int m = 0;
while((1 << m) < n)m++;
n = (1 << m);
vector<ll> a = x, b = y;
a.resize(n, 0);
b.resize(n, 0);
if(n <= 32){
return simple_multiply(a, b);
}
int k = n >> 1;
vector<ll> a1(a.begin(), a.begin() + k);
vector<ll> a2(a.begin() + k, a.end());
vector<ll> b1(b.begin(), b.begin() + k);
vector<ll> b2(b.begin() + k, b.end());
vector<ll> a1b1 = karatsuba_multiply(a1, b1);
vector<ll> a2b2 = karatsuba_multiply(a2, b2);
for(int i = 0; i < k; i++)a2[i] += a1[i];
for(int i = 0; i < k; i++)b2[i] += b1[i];
vector<ll> z = karatsuba_multiply(a2, b2);
for(int i = 0; i < a1b1.size(); i++)z[i] -= a1b1[i];
for(int i = 0; i < a2b2.size(); i++)z[i] -= a2b2[i];
vector<ll> res(2 * n, 0);
for(int i = 0; i < a1b1.size(); i++)res[i] += a1b1[i];
for(int i = 0; i < a2b2.size(); i++)res[i + n] += a2b2[i];
for(int i = 0; i < z.size(); i++)res[i + k] += z[i];
while(!res.empty() && res.back() == 0)res.pop_back();
return res;
}
struct Bigint{
const ll base = 100000000;
const ll mbase = 1000; // 1000 for FFT, 10000 otherwise
const int b = 8;
const int mb = 3; // 3 for FFT, 10000 otherwise
int sign = 1;
vector<ll> dg;
Bigint(){}
Bigint(ll x){
if(x < 0){
sign = -1;
x *= -1;
}
while(x){
dg.push_back(x % base);
x /= base;
}
}
Bigint(const string &s){
int e = 0;
if(s[0] == '-'){
sign = -1;
e++;
}
for(int i = int(s.size()) - 1; i >= e; i-=b){
int B = (i - b + 1 >= e ? b: i + 1 - e);
ll x = stoll(s.substr(max(e, i - b + 1), B));
dg.push_back(x);
}
}
Bigint& operator=(const string &s){
*this = Bigint(s);
return *this;
}
Bigint& operator=(const Bigint &x){
sign = x.sign;
dg = x.dg;
return *this;
}
Bigint& operator=(ll x){
return (*this = Bigint(x));
}
Bigint operator-() const{
Bigint res = *this;
res.sign *= -1;
return res;
}
Bigint operator+(const Bigint &x) const{
if(sign == x.sign){
Bigint res;
res.sign = sign;
res.dg.resize(max(dg.size(), x.dg.size()));
ll carry = 0;
for(int i = 0; i < max(dg.size(), x.dg.size()); i++){
ll tmp = carry;
if(i < dg.size())tmp += dg[i];
if(i < x.dg.size())tmp += x.dg[i];
res.dg[i] = (tmp % base);
carry = tmp / base;
}
while(carry){
res.dg.push_back(carry % base);
carry /= base;
}
return res;
}else{
return (*this - (- x));
}
}
void trim(){
while(!dg.empty() && dg.back() == 0)dg.pop_back();
if(dg.empty())sign = 1;
}
Bigint abs() const{
Bigint res = *this;
res.sign = 1;
return res;
}
Bigint operator-(const Bigint &x) const{
if(sign == x.sign){
if(abs() >= x.abs()){
Bigint res = *this;
ll carry = 0;
for(int i = 0; i < x.dg.size(); i++){
res.dg[i] -= carry + x.dg[i];
if(res.dg[i] < 0){
res.dg[i] += base;
carry = 1;
}else{
carry = 0;
}
}
if(carry > 0){
for(int i = x.dg.size(); i < res.dg.size() && carry > 0; i++){
res.dg[i] -= carry;
if(res.dg[i] < 0){
res.dg[i] += base;
carry = 1;
}else{
carry = 0;
}
}
}
res.trim();
return res;
}else{
return - (x - *this);
}
}else{
return (*this + (- x));
}
}
bool operator<(const Bigint &x) const{
if(sign != x.sign)return sign < x.sign;
if(dg.size() != x.dg.size())return int(dg.size()) * sign < int(x.dg.size()) * x.sign;
for(int i = int(dg.size()) - 1; i >= 0; i--){
if(dg[i] != x.dg[i])return dg[i] * sign < x.dg[i] * x.sign;
}
return false;
}
bool operator>(const Bigint &x) const{
return x < *this;
}
bool operator<=(const Bigint &x) const{
return !(*this > x);
}
bool operator>=(const Bigint &x) const{
return !(*this < x);
}
bool operator==(const Bigint &x) const{
return !(*this < x) && !(x < *this);
}
bool operator!=(const Bigint &x) const{
return (*this < x) || (x < *this);
}
friend istream& operator>>(istream &is, Bigint &x){
string s;
is >> s;
x = s;
return is;
}
friend ostream& operator<<(ostream& os, const Bigint &x){
if(x.sign < 0)os << '-';
if(x.dg.empty())os << 0;
else{
os << x.dg.back();
for(int i = int(x.dg.size()) - 2; i >= 0; i--){
os << setw(x.b) << setfill('0') << x.dg[i];
}
}
return os;
}
Bigint& operator*=(ll x){
if(x < 0){
x *= -1;
sign *= -1;
}
ll carry = 0;
for(int i = 0; i < dg.size(); i++){
carry = dg[i] * x + carry;
dg[i] = carry % base;
carry /= base;
}
while(carry){
dg.push_back(carry % base);
carry /= base;
}
trim();
return *this;
}
Bigint operator*(ll x) const{
Bigint res = *this;
res *= x;
return res;
}
Bigint operator*(const Bigint &v) const{
vector<ll> x = convert_base(dg, b, mb);
vector<ll> y = convert_base(v.dg, b, mb);
if(x.empty())x.push_back(0);
if(y.empty())y.push_back(0);
// simple multiplication
// vector<ll> mul = simple_multiply(x, y);
// FFT
vector<ll> mul = fft_multiply(x, y);
// karatsuba
// vector<ll> mul = karatsuba_multiply(x, y);
Bigint res;
res.sign = sign * v.sign;
ll carry = 0;
for(int i = 0; i < mul.size(); i++){
carry += mul[i];
res.dg.push_back(carry % mbase);
carry /= mbase;
}
while(carry){
res.dg.push_back(carry % mbase);
carry /= mbase;
}
res.dg = convert_base(res.dg, mb, b);
res.trim();
return res;
}
// a = bq + r
pair<Bigint, Bigint> divmod(const Bigint &a1, const Bigint &b1) const{
ll norm = base / (b1.dg.back() + 1);
Bigint q, r;
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
Bigint a = a1.abs() * norm;
Bigint b = b1.abs() * norm;
q.dg.resize(a.dg.size());
for(int i = int(a.dg.size()) - 1; i >= 0; i--){
r = r * base + a.dg[i];
ll s1 = (r.dg.size() <= b.dg.size() ? 0: r.dg[b.dg.size()]);
ll s2 = (r.dg.size() <= int(b.dg.size()) - 1 ? 0: r.dg[int(b.dg.size()) - 1]);
// temporary solution
ll d = (base * s1 + s2) / b.dg.back();
r -= b * d;
// feedback
while(r < 0)r += b, d--;
q.dg[i] = d;
}
q.trim();
r.trim();
return make_pair(q, r / norm);
}
Bigint operator/(const Bigint &x) const{
return divmod(*this, x).first;
}
Bigint operator%(const Bigint &x) const{
return divmod(*this, x).second;
}
Bigint& operator/=(ll x){
if(x < 0){
x *= -1;
sign *= -1;
}
ll rem = 0;
for(int i = int(dg.size()) - 1; i >= 0; i--){
rem = dg[i] + rem * base;
dg[i] = rem / x;
rem = rem % x;
}
trim();
return *this;
}
Bigint operator/(ll x) const{
Bigint res = *this;
res /= x;
return res;
}
Bigint operator%(ll x) const{
if(x < 0)x *= -1;
ll m = 0;
for(int i = int(dg.size()) - 1; i >= 0; i--){
m = (dg[i] + m * base) % x;
}
return m * sign;
}
Bigint& operator+=(const Bigint &x){
*this = *this + x;
return *this;
}
Bigint& operator-=(const Bigint &x){
*this = *this - x;
return *this;
}
Bigint& operator*=(const Bigint &x){
*this = *this * x;
return *this;
}
Bigint& operator/=(const Bigint &x){
*this = *this / x;
return *this;
}
bool iszero(){
trim();
if(dg.empty())return false;
return true;
}
ll long_value() const {
ll res = 0;
for(int i = int(dg.size()) - 1; i >= 0; i--){
res = res * base + dg[i];
}
return res * sign;
}
};
int main(int argc, char const* argv[])
{
Bigint n, m;
cin >> n >> m;
int N = n.dg[0] % 10;
int cnt = 1;
int curr = N;
do{
cnt++;
curr = curr * N % 10;
}while(N != curr);
m = m % (ll)cnt;
int M = m.dg[0];
int res = 1;
rep(i, M)res = res * N % 10;
cout << res << endl;
return 0;
}