結果
| 問題 |
No.470 Inverse S+T Problem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-25 20:02:02 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 39 ms / 2,000 ms |
| コード長 | 4,686 bytes |
| コンパイル時間 | 3,199 ms |
| コンパイル使用メモリ | 224,600 KB |
| 最終ジャッジ日時 | 2025-01-07 19:08:02 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 27 |
ソースコード
#include <bits/stdc++.h>
#define FOR(v, a, b) for(int v = (a); v < (b); ++v)
#define FORE(v, a, b) for(int v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(int v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define LLI long long int
#define fst first
#define snd second
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(x) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> istream& operator>>(istream &is, pair<T,U> &p){is >> p.first >> p.second; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
class TwoSat{
int n;
vector<vector<int>> g, rg;
int f(int i){
assert(i != 0);
assert(abs(i) <= n);
if(i > 0) return i-1;
else return abs(i)-1 + n;
}
public:
TwoSat(int n): n(n), g(2*n), rg(2*n){}
/**
* @brief a→bを導入する
*/
void add_if(int a, int b){
g[f(a)].push_back(f(b));
rg[f(b)].push_back(f(a));
}
/**
* @brief a∨bを導入する
* @note a ∨ b <=> (!a => b) ∧ (!b => a)
*/
void add_or(int a, int b){
add_if(-a, b);
add_if(-b, a);
}
/**
* @brief ¬(a∧b)を導入する
* @note !(A ∧ B) <=> (!A ∨ !B)
*/
void not_coexist(int a, int b){
add_or(-a, -b);
}
private:
// scc用
vector<bool> visit;
vector<int> check;
vector<int> scc;
void dfs(int cur){
visit[cur] = true;
for(auto e : g[cur]){
if(not visit[e]) dfs(e);
}
check.push_back(cur);
}
void rdfs(int cur, int i){
scc[cur] = i;
for(auto e : rg[cur]){
if(scc[e] == -1) rdfs(e,i);
}
}
vector<int> tsort(const vector<vector<int>> &graph){
int n = graph.size();
vector<int> indeg(n);
REP(i,n){
for(auto e : graph[i]){
++indeg[e];
}
}
stack<int> st;
REV(i,n-1,0){
if(indeg[i] == 0) st.push(i);
}
vector<int> ret;
while(!st.empty()){
int cur = st.top(); st.pop();
ret.push_back(cur);
for(auto e : graph[cur]){
--indeg[e];
if(indeg[e]==0){
st.push(e);
}
}
}
return ret;
}
public:
bool solve(vector<bool> &ret){
visit.assign(2*n, false);
scc.assign(2*n, -1);
REP(i,2*n) if(!visit[i]) dfs(i);
reverse(ALL(check));
int m = 0;
for(auto c : check) if(scc[c] == -1) {rdfs(c,m); ++m;}
REP(i,n) if(scc[i] == scc[i+n]) return false;
vector<vector<int>> g2(m);
REP(i,n*2){
for(auto j : g[i]){
if(scc[i] != scc[j]) g2[scc[i]].push_back(scc[j]);
}
}
auto ts = tsort(g2);
vector<int> r(m);
REP(i,m) r[ts[i]] = i;
ret = vector<bool>(n);
REP(i,n) ret[i] = r[scc[i]] > r[scc[i+n]];
return true;
}
};
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
int N;
while(cin >> N){
vector<string> U(N); cin >> U;
vector<string> S1(N), T1(N), S2(N), T2(N);
REP(i,N){
S1[i] = {U[i][0], U[i][1]};
T1[i] = {U[i][2]};
S2[i] = {U[i][0]};
T2[i] = {U[i][1], U[i][2]};
}
TwoSat sat(N);
set<char> cnt;
for(auto &s : U) for(auto &c : s) cnt.insert(c);
if((int)cnt.size() < N){
cout << "Impossible" << endl;
continue;
}
FORE(i,1,N){
FORE(j,i+1,N){
if(S1[i-1] == S1[j-1] or T1[i-1] == T1[j-1]) sat.not_coexist(i, j);
if(S1[i-1] == T2[j-1] or T1[i-1] == S2[j-1]) sat.not_coexist(i, -j);
if(S2[i-1] == T1[j-1] or T2[i-1] == S1[j-1]) sat.not_coexist(-i, j);
if(S2[i-1] == S2[j-1] or T2[i-1] == T2[j-1]) sat.not_coexist(-i, -j);
}
}
vector<bool> ret;
bool ans = sat.solve(ret);
if(ans){
REP(i,N){
if(ret[i]) cout << S1[i] << " " << T1[i] << endl;
else cout << S2[i] << " " << T2[i] << endl;
}
}else{
cout << "Impossible" << endl;
}
}
return 0;
}