結果

問題 No.875 Range Mindex Query
ユーザー phanta_stickphanta_stick
提出日時 2019-09-25 23:21:26
言語 C#(csc)
(csc 3.9.0)
結果
AC  
実行時間 919 ms / 2,000 ms
コード長 16,820 bytes
コンパイル時間 2,249 ms
コンパイル使用メモリ 120,680 KB
実行使用メモリ 53,272 KB
最終ジャッジ日時 2024-09-22 20:07:45
合計ジャッジ時間 9,824 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 36 ms
28,736 KB
testcase_01 AC 43 ms
28,620 KB
testcase_02 AC 44 ms
28,864 KB
testcase_03 AC 37 ms
28,356 KB
testcase_04 AC 41 ms
30,600 KB
testcase_05 AC 40 ms
28,812 KB
testcase_06 AC 41 ms
28,940 KB
testcase_07 AC 43 ms
30,856 KB
testcase_08 AC 42 ms
31,108 KB
testcase_09 AC 41 ms
28,860 KB
testcase_10 AC 44 ms
28,836 KB
testcase_11 AC 746 ms
48,268 KB
testcase_12 AC 623 ms
48,020 KB
testcase_13 AC 521 ms
48,624 KB
testcase_14 AC 530 ms
46,160 KB
testcase_15 AC 722 ms
53,272 KB
testcase_16 AC 873 ms
47,428 KB
testcase_17 AC 919 ms
45,776 KB
testcase_18 AC 877 ms
45,648 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
Microsoft (R) Visual C# Compiler version 3.9.0-6.21124.20 (db94f4cc)
Copyright (C) Microsoft Corporation. All rights reserved.

ソースコード

diff #

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

public class ABC
{
    //          long[] sp = Console.ReadLine().Split().Select(long .Parse).ToArray();
    //          int[] sp = Console.ReadLine().Split().Select(int.Parse).ToArray();
    //          int N =  int.Parse(Console.ReadLine());
    //CompLib.Collections.PriorityQueue<?>
    public static void Main()
    {
        int N=0, Q=0;
        new readint(ref N, ref Q);
        int[] a = Console.ReadLine().Split().Select(int.Parse).ToArray();
        var segTree = new Segtree<Tuple<int, int>>(200001, (i, j) => new Tuple<int,int>(Math.Min(i.Item1, j.Item1), (i.Item1 > j.Item1) ? j.Item2 : i.Item2), new Tuple<int,int>(int.MaxValue, 0));
        
        for (int i = 1; i <= a.Length; i++)
        {
            segTree.update(i, new Tuple<int,int>(a[i-1],i));
        }

        for (int i = 0; i < Q; i++)
        {
            int[] query = Console.ReadLine().Split().Select(int.Parse).ToArray();
            if (query[0] == 1)
            {
                var left = segTree.look(query[1]);
                var right = segTree.look(query[2]);

                var left2 = left.Item2;
                var right2 = right.Item2;

                segTree.update(query[1], new Tuple<int, int>(right.Item1, left.Item2));
                segTree.update(query[2], new Tuple<int, int>(left.Item1, right.Item2));

            
            }
            else
            {
                var output = segTree.run(query[1], query[2]+1);
                Console.WriteLine(output.Item2);
            }

        }


    }




}


class readint
{


    public readint(ref int i)
    {
        i = int.Parse(Console.ReadLine());

    }
    public readint(ref int a, ref int b)
    {
        int[] sp = Console.ReadLine().Split().Select(int.Parse).ToArray();
        a = sp[0];
        b = sp[1];

    }
    public readint(ref int a, ref int b,ref int c)
    {
        int[] sp = Console.ReadLine().Split().Select(int.Parse).ToArray();
        a = sp[0];
        b = sp[1];
        c = sp[2];
    }
    public readint(ref int a, ref int b,ref int c,ref int d)
    {
        int[] sp = Console.ReadLine().Split().Select(int.Parse).ToArray();
        a = sp[0];
        b = sp[1];
        c = sp[2];
        d = sp[3];

    }

}

class readlong
{


    public readlong(ref long i)
    {
        i = long.Parse(Console.ReadLine());

    }
    public readlong(ref long a, ref long b)
    {
        long[] sp = Console.ReadLine().Split().Select(long.Parse).ToArray();
        a = sp[0];
        b = sp[1];

    }
    public readlong(ref long a, ref long b, ref long c)
    {
        long[] sp = Console.ReadLine().Split().Select(long.Parse).ToArray();
        a = sp[0];
        b = sp[1];
        c = sp[2];
    }
    public readlong(ref long a, ref long b, ref long c, ref long d)
    {
        long[] sp = Console.ReadLine().Split().Select(long.Parse).ToArray();
        a = sp[0];
        b = sp[1];
        c = sp[2];
        d = sp[3];

    }

}







class Util
{





    public static long GCD(long a, long b)
    {
        if (a < b)
            swap(ref a, ref b);
        if (a % b == 0) return b;
        return GCD(b, a % b);

    }
    public static int GCD(int a, int b)
    {
        if (a < b)
            swap(ref a, ref b);
        if (a % b == 0) return b;
        return GCD(b, a % b);
    }

    public static void swap<T>(ref T a, ref T b)
    {
        T temp = b;
        b = a;
        a = temp;

    }
    public static long LCM(long a, long b)
    {
        return a * b / GCD(a, b);
    }
    public static long LCM(int a, int b)
    {
        return Math.BigMul(a, b) / GCD(a, b);
    }


    public static int M = (int)(Math.Pow(10, 9)) + 7;
    private static int[] factorial_modM;
    public static int Multiple_modM(int a, int b)
    {
        return (int)(Math.BigMul(a, b) % M);
    }
    public static void factorial_modM_Prepare(int n)
    {
        factorial_modM = new int[n + 1];
        factorial_modM[0] = 1;
        for (int i = 1; i <= n; ++i)
        {
            factorial_modM[i] = Multiple_modM(factorial_modM[i - 1], i);
        }
    }
    public static int Factorial(int n)
    {
        return factorial_modM[n];
    }
    public static int Pow(int a, int m)
    {
        switch (m)
        {
            case 0:
                return 1;
            case 1:
                return a;
            default:
                int p1 = Pow(a, m / 2);
                int p2 = Multiple_modM(p1, p1);
                return ((m % 2) == 0) ? p2 : Multiple_modM(p2, a);
        }
    }
    public static int Div(int a, int b)
    {
        return Multiple_modM(a, Pow(b, M - 2));
    }
    public static int nCr_modM(int n, int r)
    {
        if (n < r) { return 0; }
        if (n == r) { return 1; }
        int res = Factorial(n);
        res = Div(res, Factorial(r));
        res = Div(res, Factorial(n - r));
        return res;
    }

}

class UnionFind<T>
{
    public int tree_height;
    public UnionFind<T> parent;
    public T item
    {
        get;
        private set;
    }

    public UnionFind(T item)
    {
        tree_height = 0;
        parent = this;
    }

    public UnionFind<T> FindAdam()
    {
        if (parent == this) return this;
        else
        {
            UnionFind<T> ParentOfParent = parent.FindAdam();
            parent = ParentOfParent;//縦長な構成をつなぎ直している
            return ParentOfParent;
        }
    }
    public static void Unite(UnionFind<T> a, UnionFind<T> b)
    {
        UnionFind<T> ParentOfA = a.FindAdam();
        UnionFind<T> ParentOfB = b.FindAdam();
        if (ParentOfA.tree_height < ParentOfB.tree_height)
        {
            ParentOfA.parent = ParentOfB;
            ParentOfB.tree_height = Math.Max(ParentOfA.tree_height + 1, ParentOfB.tree_height);
        }
        else
        {
            ParentOfB.parent = ParentOfA;
            ParentOfA.tree_height = Math.Max(ParentOfB.tree_height + 1, ParentOfA.tree_height);
        }

    }

}

//Treap 平衡二分木
class Treap<T> where T : IComparable
{
    private class Node
    {
        private static Random g_rand = new Random();
        private readonly int m_rank = g_rand.Next();
        private readonly T m_value;
        private Node m_lch;
        private Node m_rch;
        private int m_count;

        public Node(T value)
        {
            m_value = value;
            m_count = 1;
        }

        private static int Count(Node node)
        {
            return (node != null) ? node.m_count : 0;
        }

        private Node Update()
        {
            m_count = Count(m_lch) + Count(m_rch) + 1;
            return this;
        }

        public static Node Merge(Node a, Node b)
        {
            if (a == null) { return b; }
            if (b == null) { return a; }

            if (a.m_rank < b.m_rank)
            {
                a.m_rch = Merge(a.m_rch, b);
                return a.Update();
            }
            else
            {
                b.m_lch = Merge(a, b.m_lch);
                return b.Update();
            }
        }

        public static Tuple<Node, Node> Split(Node t, int k)
        {
            if (t == null) { return new Tuple<Node, Node>(null, null); }

            if (k <= Count(t.m_lch))
            {
                var pair = Split(t.m_lch, k);
                t.m_lch = pair.Item2;
                return new Tuple<Node, Node>(pair.Item1, t.Update());
            }
            else
            {
                var pair = Split(t.m_rch, k - Count(t.m_lch) - 1);
                t.m_rch = pair.Item1;
                return new Tuple<Node, Node>(t.Update(), pair.Item2);
            }
        }

        public int FindIndex(T value)
        {
            int L = Count(m_lch);
            if (value.CompareTo(m_value) < 0)
            {
                return (m_lch != null) ? m_lch.FindIndex(value) : 0;
            }
            else if (value.CompareTo(m_value) > 0)
            {
                return (m_rch != null) ? m_rch.FindIndex(value) + L + 1 : L + 1;
            }
            else
            {
                return L;
            }
        }

        public T this[int i]
        {
            get
            {
                int L = Count(m_lch);
                if (i < L)
                {
                    return m_lch[i];
                }
                else if (i > L)
                {
                    return m_rch[i - L - 1];
                }
                else
                {
                    return m_value;
                }
            }
        }
    }

    private Node node;

    public void Insert(T value)
    {
        if (node != null)
        {
            int k = node.FindIndex(value);
            var pair = Node.Split(node, k);
            node = Node.Merge(Node.Merge(pair.Item1, new Node(value)), pair.Item2);
        }
        else
        {
            node = new Node(value);
        }
    }

    public int FindIndex(T value)
    {
        return node.FindIndex(value);
    }

    public T this[int i]
    {
        get
        {
            return node[i];
        }
    }
}

static class Permutation<T>
{
    private static void Search(List<T[]> perms, Stack<T> stack, T[] a)
    {
        int N = a.Length;
        if (N == 0)
        {
            perms.Add(stack.Reverse().ToArray());
        }
        else
        {
            var b = new T[N - 1];
            Array.Copy(a, 1, b, 0, N - 1);
            for (int i = 0; i < a.Length; ++i)
            {
                stack.Push(a[i]);
                Search(perms, stack, b);
                if (i < b.Length) { b[i] = a[i]; }
                stack.Pop();
            }
        }
    }
    public static IEnumerable<T[]> All(IEnumerable<T> src)
    {
        var perms = new List<T[]>();
        Search(perms, new Stack<T>(), src.ToArray());
        return perms;
    }
}

namespace CompLib.Collections
{
    #region PriorityQueue
    /// <summary>
    /// 指定した型のインスタンスを最も価値が低い順に取り出すことが可能な可変サイズのコレクションを表します.
    /// </summary>
    /// <typeparam name="T">優先度付きキュー内の要素の型を指定します.</typeparam>
    /// <remarks>内部的にはバイナリヒープによって実装されています.</remarks>
    public class PriorityQueue<T>
    {
        readonly List<T> heap = new List<T>();
        readonly Comparison<T> cmp;

        /// <summary>
        /// デフォルトの比較子を使用してインスタンスを初期化します.
        /// </summary>
        /// <remarks>この操作は O(1) で実行されます.</remarks>
        public PriorityQueue() { cmp = Comparer<T>.Default.Compare; }

        /// <summary>
        /// デリゲートで表されるような比較関数を使用してインスタンスを初期化します.
        /// </summary>
        /// <param name="comparison"></param>
        /// <remarks>この操作は O(1) で実行されます.</remarks>
        public PriorityQueue(Comparison<T> comparison) { cmp = comparison; }

        /// <summary>
        /// 指定された比較子を使用してインスタンスを初期化します.
        /// </summary>
        /// <param name="comparer"></param>
        /// <remarks>この操作は O(1) で実行されます.</remarks>
        public PriorityQueue(IComparer<T> comparer) { cmp = comparer.Compare; }

        /// <summary>
        /// 優先度付きキューに要素を追加します.
        /// </summary>
        /// <param name="item">優先度付きキューに追加される要素</param>
        /// <remarks>最悪計算量 O(log N) で実行されます.</remarks>
        public void Enqueue(T item)
        {
            var pos = heap.Count;
            heap.Add(item);
            while (pos > 0)
            {
                var par = (pos - 1) / 2;
                if (cmp(heap[par], item) <= 0)
                    break;
                heap[pos] = heap[par];
                pos = par;
            }
            heap[pos] = item;

        }

        /// <summary>
        /// 優先度付きキューから最も価値が低い要素を削除し,返します.
        /// </summary>
        /// <returns>優先度付きキューから削除された要素.</returns>
        /// <remarks>最悪計算量 O(log N) で実行されます.</remarks>
        public T Dequeue()
        {
            var ret = heap[0];
            var pos = 0;
            var x = heap[heap.Count - 1];

            while (pos * 2 + 1 < heap.Count - 1)
            {
                var lch = pos * 2 + 1;
                var rch = pos * 2 + 2;
                if (rch < heap.Count - 1 && cmp(heap[rch], heap[lch]) < 0) lch = rch;
                if (cmp(heap[lch], x) >= 0)
                    break;
                heap[pos] = heap[lch];
                pos = lch;
            }
            heap[pos] = x;
            heap.RemoveAt(heap.Count - 1);
            return ret;

        }
        /// <summary>
        ///  優先度付きキューに含まれる最も価値が低い要素を削除せずに返します.
        /// </summary>
        /// <returns>優先度付きキューに含まれる最も価値が低い要素.</returns>
        /// <remarks>この操作は O(1) で実行されます.</remarks>
        public T Peek() { return heap[0]; }

        /// <summary>
        /// 優先度付きキュー内の要素の数を取得します.
        /// </summary>
        /// <returns>優先度付キュー内にある要素の数</returns>
        /// <remarks>最悪計算量 O(1) で実行されます.</remarks>
        public int Count { get { return heap.Count; } }
        /// <summary>
        /// 優先度付きキュー内に要素が存在するかどうかを O(1) で判定します.
        /// </summary>
        /// <returns>優先度付キュー内にある要素が存在するならば true,そうでなければ false.</returns>
        /// <remarks>この操作は O(1) で実行されます.</remarks>
        public bool Any() { return heap.Count > 0; }

        /// <summary>
        /// 優先度付きキューに含まれる要素を昇順に並べて返します.
        /// </summary>
        /// <remarks>この操作は計算量 O(N log N)で実行されます.</remarks>
        public T[] Items
        {
            get
            {
                var ret = heap.ToArray();
                Array.Sort(ret, cmp);
                return ret;
            }
        }
    }
    #endregion
}

/// <summary>
/// SEGTREEは1-BASE運用でございます
/// よろしくおねがいします
/// </summary>
/// <typeparam name="T"></typeparam>

class Segtree<T>
{
    int n;//高さ
    T[] tree;//本体
    Func<T, T, T> f;//更新関数。a -> b -> ab使ったなにか
    T exnum;//初期値
    int count;
    public Segtree(int m, Func<T, T, T> f, T ex)
    {
        this.count = 0;
        this.f = f;
        this.exnum = ex;
        n = 1;
        while (n < m) n <<= 1;

        tree = new T[(n << 1) - 1];
        for (int i = 0; i < tree.Length; i++) tree[i] = ex;
    }
    public Segtree(int m, T ini, Func<T, T, T> f, T ex) : this(m, f, ex)
    {
        this.count = 0;
        for (int i = 0; i < m; ++i) tree[i + n - 1] = ini;
        all_update();
    }
    public void assign_without_update(int j, T x)
    {
        tree[j + n - 1] = x;
    }
    public void update(int j, T x)//j番目をxにする
    {
        int i = j + n - 1;
        tree[i] = x;
        while (i > 0)
        {
            i = (i - 1) >> 1;
            tree[i] = f(tree[(i << 1) + 1], tree[(i << 1) + 2]);
        }
        this.count++;
    }


    public void all_update()
    {
        for (int i = n - 2; i >= 0; i--)
            tree[i] = f(tree[(i << 1) + 1], tree[(i << 1) + 2]);
    }
    public T look(int i) { return tree[i + n - 1]; }

    public void delete(int j)
    {
        int i = j + n - 1;
        tree[i] = exnum;
        int moved = 0;

        while (true)
        {
            tree[i + 1] = tree[i];
            T check = tree[i];
            moved++;
            if (moved + j + 2 > count)
            {
                break;
            }
            
        }
        all_update();
    }


    // [s, t)
    public T run(int s, int t) { return query(s, t, 0, 0, n); }
    T query(int s, int t, int k, int l, int r)
    {
        if (r <= s || t <= l) return exnum;
        if (s <= l && r <= t) return tree[k];

        return f(query(s, t, (k << 1) + 1, l, (l + r) >> 1), query(s, t, (k + 1) << 1, (l + r) >> 1, r));
    }
}
0