結果
問題 | No.245 貫け! |
ユーザー | face4 |
提出日時 | 2019-09-27 13:39:37 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 77 ms / 5,000 ms |
コード長 | 10,248 bytes |
コンパイル時間 | 1,144 ms |
コンパイル使用メモリ | 97,568 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-24 06:51:41 |
合計ジャッジ時間 | 2,430 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 3 ms
6,940 KB |
testcase_09 | AC | 6 ms
6,940 KB |
testcase_10 | AC | 9 ms
6,944 KB |
testcase_11 | AC | 28 ms
6,940 KB |
testcase_12 | AC | 75 ms
6,944 KB |
testcase_13 | AC | 75 ms
6,940 KB |
testcase_14 | AC | 73 ms
6,944 KB |
testcase_15 | AC | 74 ms
6,940 KB |
testcase_16 | AC | 75 ms
6,940 KB |
testcase_17 | AC | 76 ms
6,940 KB |
testcase_18 | AC | 75 ms
6,940 KB |
testcase_19 | AC | 77 ms
6,940 KB |
ソースコード
#include<iostream>#include<vector>#include<iomanip>#include<cmath>#include<algorithm>#include<cassert>using namespace std;#define EPS (1e-10)#define equals(a, b) (fabs((a) - (b)) < EPS)struct Point;typedef Point Vector;typedef vector<Point> Polygon;struct Circle;struct Segment;typedef Segment Line;double norm(Point a);double abs(Point a);double dot(Vector a, Vector b);double cross(Vector a, Vector b);double getDistance(Point a, Point b);double getDistanceLP(Line l, Point p);double getDistanceSP(Segment s, Point p);double getDistance(Segment s1, Segment s2);bool isOrthogonal(Vector a, Vector b);bool isOrthogonal(Point a1, Point a2, Point b1, Point b2);bool isOrthogonal(Segment s1, Segment s2);bool isParallel(Vector a, Vector b);bool isParallel(Point a1, Point a2, Point b1, Point b2);bool isParallel(Segment s1, Segment s2);int ccw(Point p0, Point p1, Point p2);bool intersect(Point p1, Point p2, Point p3, Point p4);bool intersect(Segment s1, Segment s2);bool intersect(Circle c, Line l); // 誤差の検証をしていないbool intersect(Circle c1, Circle c2); // 誤差の検証をしていないPoint project(Segment s, Point p);Point reflect(Segment s, Point p);Point getCrossPoint(Segment s1, Segment s2);pair<Point,Point> getCrossPoints(Circle c, Line l);pair<Point,Point> getCrossPoints(Circle c1, Circle c2); // 誤差の検証をしていないpair<Point,Point> getContactPoints(Circle c, Point p); // 接点 点は円の外部double area(Polygon g); // convexでなくてもよい. absを消せば符号付き面積bool isConvex(Polygon g); // O(n^2) 線形時間アルゴリズムが存在するらしいint contains(Polygon g, Point p);double arg(Vector p); // 偏角Vector polar(double a, double r); // 極座標系->ベクトルPolygon andrewScan(Polygon g); // 凸包の辺上の点も含めたければ!=CLOCKWISEを==COUNTER_CLOCKWISEにdouble convexDiameter(Polygon g); // gはconvexstruct Point{double x, y;Point(double x = 0, double y = 0) : x(x), y(y) {}Point operator + (Point p){ return Point(x+p.x, y+p.y); }Point operator - (Point p){ return Point(x-p.x, y-p.y); }Point operator * (double a){ return Point(a*x, a*y); }Point operator / (double a){ return Point(x/a, y/a); }double abs() { return sqrt(norm()); }double norm() { return x*x + y*y; }bool operator < (const Point &p) const{return x != p.x ? x < p.x : y < p.y;}bool operator == (const Point &p) const{return fabs(x-p.x) < EPS && fabs(y-p.y) < EPS;}};typedef Point Vector;typedef vector<Point> Polygon;struct Circle{Point c;double r;Circle(Point c = Point(), double r = 0.0) : c(c), r(r) {}};struct Segment{Point p1, p2;Segment(Point p1, Point p2) : p1(p1), p2(p2) {}};typedef Segment Line;double norm(Point a){return a.x * a.x + a.y * a.y;}double abs(Point a){return sqrt(norm(a));}double dot(Vector a, Vector b){return a.x * b.x + a.y * b.y;}double cross(Vector a, Vector b){return a.x * b.y - a.y * b.x;}double getDistance(Point a, Point b){return abs(a - b);}double getDistanceLP(Line l, Point p){return abs(cross(l.p2 - l.p1, p - l.p1) / abs(l.p2 - l.p1));}double getDistanceSP(Segment s, Point p){if(dot(s.p2-s.p1, p-s.p1) < 0.0) return abs(p-s.p1);if(dot(s.p1-s.p2, p-s.p2) < 0.0) return abs(p-s.p2);return getDistanceLP(s, p);}double getDistance(Segment s1, Segment s2){if(intersect(s1, s2)) return 0.0;return min({getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2),getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2)});}bool isOrthogonal(Vector a, Vector b){return equals(dot(a, b), 0.0);}bool isOrthogonal(Point a1, Point a2, Point b1, Point b2){return isOrthogonal(a1-a2, b1-b2);}bool isOrthogonal(Segment s1, Segment s2){return equals(dot(s1.p2-s1.p1, s2.p2-s2.p1), 0.0);}bool isParallel(Vector a, Vector b){return equals(cross(a, b), 0.0);}bool isParallel(Point a1, Point a2, Point b1, Point b2){return isParallel(a1-a2, b1-b2);}bool isParallel(Segment s1, Segment s2){return equals(cross(s1.p2-s1.p1, s2.p2-s2.p1), 0.0);}static const int COUNTER_CLOCKWISE = 1;static const int CLOCKWISE = -1;static const int ONLINE_BACK = 2; // p2->p0->p1static const int ONLINE_FRONT = -2; // p0->p1->p2static const int ON_SEGMENT = 0; // p0->p2->p1int ccw(Point p0, Point p1, Point p2){Vector a = p1 - p0;Vector b = p2 - p0;if(cross(a, b) > EPS) return COUNTER_CLOCKWISE;if(cross(a, b) < -EPS) return CLOCKWISE;if(dot(a, b) < -EPS) return ONLINE_BACK;if(norm(a) < norm(b)) return ONLINE_FRONT;return ON_SEGMENT;}bool intersect(Point p1, Point p2, Point p3, Point p4){return (ccw(p1, p2, p3) * ccw(p1, p2, p4) <= 0 &&ccw(p3, p4, p1) * ccw(p3, p4, p2) <= 0);}bool intersect(Segment s1, Segment s2){return intersect(s1.p1, s1.p2, s2.p1, s2.p2);}bool intersect(Circle c, Line l){return getDistanceLP(l, c.c) < c.r+EPS;}bool intersect(Circle c1, Circle c2){return abs(c1.r-c2.r) <= getDistance(c1.c, c2.c) && getDistance(c1.c, c2.c) < c1.r+c2.r+EPS;}Point project(Segment s, Point p){Vector base = s.p2 - s.p1;double r = dot(p - s.p1, base) / norm(base);return s.p1 + base * r;}Point reflect(Segment s, Point p){return p + (project(s, p) - p) * 2.0;}Point getCrossPoint(Segment s1, Segment s2){Vector base = s2.p2 - s2.p1;double d1 = abs(cross(base, s1.p1-s2.p1));double d2 = abs(cross(base, s1.p2-s2.p1));double t = d1 / (d1 + d2);return s1.p1 + (s1.p2 - s1.p1) * t;}pair<Point,Point> getCrossPoints(Circle c, Line l){assert(intersect(c, l));Vector pr = project(l, c.c);Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1);double base = sqrt(c.r * c.r - norm(pr - c.c));return make_pair(pr + e*base, pr - e*base);}pair<Point,Point> getCrossPoints(Circle c1, Circle c2){assert(intersect(c1, c2));double d = abs(c1.c - c2.c);double a = acos( (c1.r*c1.r + d*d - c2.r*c2.r)/(2*c1.r*d) );double t = arg(c2.c - c1.c);return make_pair(c1.c + polar(c1.r, t+a), c1.c + polar(c1.r, t-a));}pair<Point,Point> getContactPoints(Circle c, Point p){assert(c.r < getDistance(c.c, p));double d = getDistance(c.c, p);return getCrossPoints(c, Circle(p, sqrt(d*d-c.r*c.r)));}double area(Polygon g){if(g.size() < 3) return 0;int n = g.size();Point o(0.0, 0.0);double s = 0.0;for(int i = 0; i < n; i++) s += cross(g[i]-o, g[(i+1)%n]-o);return abs(s) / 2.0;}bool isConvex(Polygon g){bool ret = true;int n = g.size();for(int i = 0; i < n; i++){for(int j = i+1; j < n; j++){if(cross(g[i]-g[(i+n-1)%n], g[j]-g[(i+n-1)%n]) < -EPS || cross(g[(i+1)%n]-g[i], g[j]-g[i]) < -EPS){ret = false;}}}return ret;}static const int IN = 2;static const int ON = 1;static const int OUT = 0;int contains(Polygon g, Point p){int n = g.size();bool x = false;for(int i = 0; i < n; i++){Point a = g[i] - p, b = g[(i+1)%n] - p;if(abs(cross(a, b)) < EPS && dot(a, b) < EPS) return ON;if(a.y > b.y) swap(a, b);if(a.y < EPS && EPS < b.y && cross(a, b) > EPS) x = !x;}return x ? IN : OUT;}double arg(Vector p){return atan2(p.y, p.x);}Vector polar(double a, double r){return Point(a * cos(r), a * sin(r));}Polygon andrewScan(Polygon g){Polygon u, l;if(g.size() < 3) return g;sort(g.begin(), g.end());u.push_back(g[0]);u.push_back(g[1]);l.push_back(g[g.size()-1]);l.push_back(g[g.size()-2]);// upperfor(int i = 2; i < g.size(); i++){for(int n = u.size(); n >= 2 && ccw(u[n-2], u[n-1], g[i]) != CLOCKWISE; n--){u.pop_back();}u.push_back(g[i]);}// lowerfor(int i = g.size()-3; i >= 0; i--){for(int n = l.size(); n >= 2 && ccw(l[n-2], l[n-1], g[i]) != CLOCKWISE; n--){l.pop_back();}l.push_back(g[i]);}reverse(l.begin(), l.end());for(int i = u.size()-2; i >= 1; i--) l.push_back(u[i]);return l;}double convexDiameter(Polygon g){double d = 0.0;int n = g.size();int is = 0, js = 0;for(int i = 1; i < n; i++){if(g[i].y > g[is].y) is = i;if(g[i].y < g[js].y) js = i;}d = getDistance(g[is], g[js]);int i = is, j = js, maxi = is, maxj = js;do{if(cross(g[(i+1)%n]-g[i], g[(j+1)%n]-g[j]) >= 0.0) j = (j+1)%n;else i = (i+1)%n;if(getDistance(g[i], g[j]) > d){d = getDistance(g[i], g[j]);maxi = i, maxj = j;}}while(i != is || j != js);return d; // farthest pair is (maxi, maxj).}// 無理にsegmentを使わなければもっと簡潔に書ける// 外積を使えば交差判定を1回で済ませることが出来るint main(){int n;cin >> n;vector<Segment> v;for(int i = 0; i < n; i++){int a, b, c, d;cin >> a >> b >> c >> d;v.push_back(Segment(Point(a,b), Point(c,d)));}int ans = 0;for(int i = 0; i < n; i++){for(int j = 0; j < 2; j++){for(int k = 0; k < n; k++){for(int l = 0; l < 2; l++){if(i==k && j==l) continue;Point a = j==0 ? v[i].p1 : v[i].p2;Point b = l==0 ? v[k].p1 : v[k].p2;Vector diff = b-a;b = b + diff*200;a = a - diff*200;int tmp = 0;for(int m = 0; m < n; m++){if(equals(abs(dot(b-a, v[m].p1-v[m].p2)), 1.0)){tmp++;}else if(intersect(a, b, v[m].p1, v[m].p2)){tmp++;}}ans = max(ans, tmp);}}}}cout << ans << endl;return 0;}