結果
問題 | No.896 友達以上恋人未満 |
ユーザー | NyaanNyaan |
提出日時 | 2019-09-27 22:10:51 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 8,437 bytes |
コンパイル時間 | 1,546 ms |
コンパイル使用メモリ | 175,940 KB |
実行使用メモリ | 134,288 KB |
最終ジャッジ日時 | 2024-09-24 16:04:07 |
合計ジャッジ時間 | 7,592 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
ソースコード
#include <bits/stdc++.h> #define whlie while #define pb push_back #define eb emplace_back #define fi first #define se second #define rep(i,N) for(int i = 0; i < (N); i++) #define repr(i,N) for(int i = (N) - 1; i >= 0; i--) #define rep1(i,N) for(int i = 1; i <= (N) ; i++) #define repr1(i,N) for(int i = (N) ; i > 0 ; i--) #define each(x,v) for(auto& x : v) #define all(v) (v).begin(),(v).end() #define sz(v) ((int)(v).size()) #define vrep(v,it) for(auto it = v.begin(); it != v.end(); it++) #define vrepr(v,it) for(auto it = v.rbegin(); it != v.rend(); it++) #define ini(...) int __VA_ARGS__; in(__VA_ARGS__) #define inl(...) ll __VA_ARGS__; in(__VA_ARGS__) #define ins(...) string __VA_ARGS__; in(__VA_ARGS__) using namespace std; void solve(); using ll = long long; using vl = vector<ll>; using vi = vector<int>; using vvi = vector< vector<int> >; constexpr int inf = 1001001001; constexpr ll infLL = (1LL << 61) - 1; struct IoSetupNya {IoSetupNya() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); cerr << fixed << setprecision(7);} } iosetupnya; template<typename T, typename U> inline bool amin(T &x, U y) { return (y < x) ? (x = y, true) : false; } template<typename T, typename U> inline bool amax(T &x, U y) { return (x < y) ? (x = y, true) : false; } template<typename T, typename U> ostream& operator <<(ostream& os, const pair<T, U> &p) { os << p.first << " " << p.second; return os; } template<typename T, typename U> istream& operator >>(istream& is, pair<T, U> &p) { is >> p.first >> p.second; return is; } template<typename T> ostream& operator <<(ostream& os, const vector<T> &v) { int s = (int)v.size(); rep(i,s) os << (i ? " " : "") << v[i]; return os; } template<typename T> istream& operator >>(istream& is, vector<T> &v) { for(auto &x : v) is >> x; return is; } void in(){} template <typename T,class... U> void in(T &t,U &...u){ cin >> t; in(u...);} void out(){cout << "\n";} template <typename T,class... U> void out(const T &t,const U &...u){ cout << t; if(sizeof...(u)) cout << " "; out(u...);} template<typename T>void die(T x){out(x); exit(0);} #ifdef NyaanDebug #include "NyaanDebug.h" #define trc(...) do { cerr << #__VA_ARGS__ << " = "; dbg_out(__VA_ARGS__);} while(0) #define trca(v,...) do { cerr << #v << " = "; array_out(v , __VA_ARGS__ );} while(0) #else #define trc(...) #define trca(...) int main(){solve();} #endif using P = pair<ll,ll>; using vp = vector<P>; //constexpr int MOD = /**/ 1000000007; //*/ 998244353; ///////////////// struct divisor_transform{ template <typename T> static constexpr void zeta_transform(vector<T> &a){ int N = a.size() - 1; vector<int> sieve(N + 1, true); for(int p = 2; p <= N; p++) if(sieve[p]) for(int k = 1; k * p <= N; ++k) sieve[k * p] = false , a[k * p] += a[k]; } template<typename T> static constexpr void mobius_transform(T &a){ int N = a.size() - 1; vector<int> sieve(N + 1, true); for(int p = 2; p <= N; p++) if(sieve[p]) for(int k = N / p; k > 0; --k) sieve[k * p] = false , a[k * p] -= a[k]; } // verify // https://atcoder.jp/contests/arc064/submissions/7707249 template<typename T> static constexpr void zeta_transform(map<long long, T> &a){ for(auto &x : a) for(auto &y : a){ if(x == y) break; if(x.first % y.first == 0) x.second += y.second; } } template<typename T> static constexpr void mobius_transform(map<long long, T> &a){ for(auto &x : a) for(auto &y : a){ if(x == y) break; if(x.first % y.first == 0) x.second -= y.second; } } }; // verify // https://atcoder.jp/contests/agc038/submissions/7683063 // https://www.codechef.com/viewsolution/26767783 struct multiple_transform{ template <typename T> static constexpr void zeta_transform(vector<T> &a){ int N = a.size() - 1; vector<int> sieve(N + 1, true); for(int p = 2; p <= N; ++p) if(sieve[p]) for(int k = N / p; k > 0; --k) sieve[k * p] = false , a[k] += a[k * p]; } template <typename T> static constexpr void mobius_transform(vector<T> &a){ int N = a.size() - 1; vector<int> sieve(N + 1, true); for(int p = 2; p <= N; ++p) if(sieve[p]) for(int k = 1; k * p <= N; ++k) sieve[k * p] = false , a[k] -= a[k * p]; } template<typename T> static constexpr void zeta_transform(map<long long, T> &a){ for(auto it=a.rbegin(); it!=a.rend(); it++) for(auto it2=a.rbegin(); it2!=it; it2++) if(it2->first % it->first == 0) it->second += it2->second; } template<typename T> static constexpr void mobius_transform(map<long long, T> &a){ for(auto it=a.rbegin(); it!=a.rend(); it++) for(auto it2=a.rbegin(); it2!=it; it2++) if(it2->first % it->first == 0) it->second -= it2->second; } }; template<typename T> static constexpr vector<T> mobius_function(int N){ vector<T> a(N + 1 , 0); a[1] = 1; divisor_transform::mobius_transform(a); return a; } template<int N> struct constexpr_mobius_function{ int mobius[N + 1] , sieve[N + 1]; constexpr constexpr_mobius_function(): mobius() , sieve(){ for(int i=1; i<=N; i++) sieve[i] = 1, mobius[i] = 0; mobius[1] = 1; for(int p = 2; p <= N; p++) if(sieve[p]) for(int k = N / p; k > 0; --k) sieve[k * p] = false , mobius[k * p] -= mobius[k]; } const int& operator[](int i)const{return mobius[i];} }; // N = 1000000 , pnum = 78498 template<int N,int pnum> struct constexpr_prime{ int prime[pnum]; int sieve[N + 1]; constexpr_prime() : prime() , sieve() { for(int i=2;i<=N;i++) sieve[i]=1; int idx = 0; for(long long p = 2; p <= N; p++){ if(sieve[p]){ prime[idx++] = p; for(long long j = p * p; j <= N; j += p) sieve[j] = 0; } } } const long long& operator[](long long i) const{return prime[i];} }; // verify template<typename T,typename F> static constexpr unordered_map<long long,T> divisor_zeta_transform(long long N, F f){ // factorization unordered_map<long long,long long> factors; { long long M = N; for(long long i = 2; i * i <= M; i++) while(M % i == 0) factors[i]++ , M /= i; if(M != 1) factors[M]++; } unordered_map<long long,T> ret; ret.emplace(1 , 1); for(auto &d : factors){ auto ret2 = ret; T prev = 1; for(long long i = 1 , cur = d.first; i <= d.second; i++ , cur *= d.first){ T val = ( prev += f(cur) ); for(auto &x : ret) ret2.emplace(x.first*cur , x.second*val); } swap(ret , ret2); } return ret; } // verify // https://onlinejudge.u-aizu.ac.jp/status/users/NyaanNyaan/submissions/1/NTL_1_D/judge/3892694/C++14 // https://atcoder.jp/contests/abc020/submissions/7695313 template<typename T,typename F> static constexpr unordered_map<long long,T> divisor_mobius_transform(long long N, F f){ // factorization unordered_map<long long,long long> factors; { long long M = N; for(long long i = 2; i * i <= M; i++) while(M % i == 0) factors[i]++ , M /= i; if(M != 1) factors[M]++; } unordered_map<long long,T> ret; ret.emplace(1 , 1); for(auto &d : factors){ auto ret2 = ret; for(long long i = 1,cur = d.first , prev = 1; i <= d.second; i++ , cur *= d.first , prev *= d.first){ T val = f(cur) - f(prev); for(auto &x : ret) ret2.emplace(x.first*cur , x.second*val); } swap(ret , ret2); } return ret; } void solve(){ inl(M,N,mulx,addx,muly,addy,MOD); vi count(MOD + 1); { ll X,Y; { vl x(M); in(x); vl y(M); in(y); rep(i,M) count[x[i]] += y[i]; X = x[M-1], Y = y[M-1]; } for(int i=M; i<N; i++){ X = (X * mulx + addx) % MOD; Y = (Y * muly + addy) % MOD; count[X] += Y; } } trc(count); multiple_transform::zeta_transform(count); trc(count); { ll X,Y; ll ans = 0; { vl x(M); in(x); vl y(M); in(y); rep(i,M) { X = x[i] , Y = y[i]; ll cur = count[X]; if(X*Y<=MOD) cur -= count[X*Y]; out(cur); ans ^= cur; } X = x[M-1], Y = y[M-1]; } for(int i=M; i<N; i++){ X = (X * mulx + addx + MOD - 1) % MOD + 1; Y = (Y * muly + addy + MOD - 1) % MOD + 1; ll cur = count[X]; if(X*Y<=ll(MOD)) cur -= count[X*Y]; ans ^= cur; } out(ans); } }