結果
| 問題 |
No.195 フィボナッチ数列の理解(2)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-09-29 23:16:08 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,130 bytes |
| コンパイル時間 | 1,451 ms |
| コンパイル使用メモリ | 173,556 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-03 04:43:25 |
| 合計ジャッジ時間 | 2,317 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 WA * 2 |
ソースコード
// includes
#include <bits/stdc++.h>
using namespace std;
// macros
#define pb emplace_back
#define mk make_pair
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define bit(n) (1LL<<(n))
// functions
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
// types
using ll = long long int;
using P = pair<int, int>;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1000000007;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, -1, 0, 1};
// io
struct fast_io{
fast_io(){ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20);}
} fast_io_;
ll fib[55];
ll F(int i){
if(i == -2)return 1;
if(i == -1)return 0;
return fib[i];
}
int main(int argc, char const* argv[])
{
fib[0] = fib[1] = 1;
FOR(i, 2, 55)fib[i] = fib[i-1] + fib[i-2];
ll x[3]; rep(i, 3)cin >> x[i];
sort(x, x + 3);
if(x[0] == x[2]){
if(x[0] == 1){
cout << "1 1" << endl;
return 0;
}
x[0] = 1;
}else{
if(x[0] == x[1]){
swap(x[1], x[2]);
}
}
pair<ll, ll> res = mk(inf, inf);
for(int i = 0; i <= 46; i++){
for(int j = i; j <= 46; j++){
ll a = F(i-2), b = F(i-1);
ll c = F(j-2), d = F(j-1);
if(a * d - b * c == 0)continue;
ll Y = (c * x[0] - a * x[1]) / (c * b - a * d);
ll X = (d * x[0] - b * x[1]) / (a * d - b * c);
if(X <= 0 || Y <= 0)continue;
bool ok = true;
if(a * X + b * Y != x[0])ok = false;
if(c * X + d * Y != x[1])ok = false;
bool ex = false;
for(int k = j; k <= 46; k++){
ll e = F(k-2), f = F(k-1);
if(e * X + f * Y == x[2])ex = true;
}
if(!ex)ok = false;
if(ok){
res = min(res, mk(X, Y));
}
}
}
if(res == mk((ll)inf, (ll)inf)){
cout << -1 << endl;
return 0;
}
cout << res.first << " " << res.second << endl;
return 0;
}