結果

問題 No.900 aδδitivee
ユーザー niuezniuez
提出日時 2019-09-30 22:30:05
言語 C++14
(gcc 13.2.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 15,699 bytes
コンパイル時間 987 ms
コンパイル使用メモリ 79,852 KB
実行使用メモリ 120,924 KB
最終ジャッジ日時 2024-04-14 08:21:38
合計ジャッジ時間 23,236 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 29 ms
114,052 KB
testcase_01 AC 31 ms
114,168 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 AC 31 ms
114,012 KB
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 AC 409 ms
120,800 KB
testcase_23 AC 406 ms
120,668 KB
testcase_24 AC 410 ms
120,668 KB
testcase_25 AC 410 ms
120,672 KB
testcase_26 AC 402 ms
120,672 KB
testcase_27 AC 406 ms
120,668 KB
testcase_28 AC 406 ms
120,668 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <utility>
#include <array>
#include <cassert>

using i64 = long long;

struct cluster {
  i64 length;
  i64 path_cnt;
  i64 sub_cnt;

  using V = std::size_t;
  cluster(i64 a, i64 b, i64 c): length(a), path_cnt(b), sub_cnt(c) {}
  static cluster identity() {
    return cluster(0, 0, 0);
  }
  static cluster compress(const cluster& a, const cluster& b, V av, V bv, V cv) {
    return cluster(a.length + b.length, a.path_cnt + b.path_cnt, a.sub_cnt + b.sub_cnt);
  }
  static cluster rake(const cluster& a, const cluster& b, V av, V bv, V cv) {
    return cluster(a.length, a.path_cnt, a.sub_cnt + b.sub_cnt);
  }
  static cluster reverse(const cluster& c) {
    return c;
  }
  static std::size_t select(const cluster& a, const cluster& b, V av, V bv, V cv) {
    return 0;
  }
};

class vertex;

class node;
int parent_dir(node*);
node* link(vertex, vertex, cluster);
void test_comp_set(node* n);

class vertex_raw {
  cluster::V val;
  node* hand;

public:

  vertex_raw(cluster::V val): val(val), hand(nullptr) {}

  node* handle() const { return this->hand; }
  void set_handle(node* hand) { this->hand = hand; }
  const cluster::V& value() const { return this->val; }
  void set_value(cluster::V val) {
    this->val = val;
  }
};

class vertex {
  vertex_raw* ver;

private:


public:

  static vertex dangling() { return vertex(); } 

  vertex(): ver(nullptr) {}
  vertex(cluster::V val): ver( new vertex_raw(val)) {
    vertex dummy;
    dummy.ver = new vertex_raw(cluster::V());
    link(*this, dummy, cluster::identity());
  }

  bool operator==(const vertex& other) { return this->ver == other.ver; }
  
  inline node* handle() const { return this->ver->handle(); }
  inline void set_handle(node* hand) { this->ver->set_handle(hand); }
  inline const cluster::V& value() const { return this->ver->value(); }
  inline void set_value(cluster::V val) { this->ver->set_value(val); }
};

enum class Type { Compress, Rake, Edge, None };

static std::size_t ni = 0;
extern node ns[1010101];

class node {
  node* ch[2];
  node* par;
  node* ra;
  node* me;
  bool rev;
  cluster fo;
  vertex v[2];
  Type ty;

  i64 add;

public:

  node(): par(nullptr), ra(nullptr), me(nullptr), rev(false),
    fo(cluster::identity()), ty(Type::None), add(0) {} 



  static node* new_edge(vertex v, vertex u, cluster val) {
    //node* n = new node();
    node* n = ns + (ni++);
    n->v[0] = v;
    n->v[1] = u;
    n->fo = val;
    n->me = n;
    n->ty = Type::Edge;

    n->fix();

    return n;
  }

  static node* new_compress(node* left, node* right) {
    //node* n = new node();
    node* n = ns + (ni++);
    n->ch[0] = left;
    n->ch[1] = right;
    n->me = n;
    n->ty = Type::Compress;
    n->fix();
    return n;
  }

  static node* new_rake(node* left, node* right) {
    //node * n = new node();
    node* n = ns + (ni++);
    n->ch[0] = left;
    n->ch[1] = right;
    n->me = n;
    n->ty = Type::Rake;
    n->fix();
    return n;
  }

  inline void fix() {
    if(this->ty == Type::Edge) {
      if(!this->parent()) {
        this->endpoint(0).set_handle(this->me);
        this->endpoint(1).set_handle(this->me);
      }
      else if(this->parent()->ty == Type::Compress) {
        if(parent_dir(this->me) == -1) {
          this->endpoint(0).set_handle(this->me);
        }
      }
      else if(this->parent()->ty == Type::Rake) {
        this->endpoint(0).set_handle(this->me);
      }
    }
    else if(this->ty == Type::Compress) {
      this->push();
      this->v[0] = this->child(0)->endpoint(0);
      this->v[1] = this->child(1)->endpoint(1);
      assert(this->child(0)->endpoint(1) == this->child(1)->endpoint(0));

      cluster left = this->child(0)->fold();
      node* l = this->child(0);
      if(this->rake()) {
        node* r = this->rake();
        left = cluster::rake(l->fold(), r->fold(), l->endpoint(0).value(), r->endpoint(0).value(), l->endpoint(1).value());
      }
      node* r = this->child(1);
      this->fo= cluster::compress(left, r->fold(),
          l->endpoint(0).value(), r->endpoint(1).value(), l->endpoint(1).value());
      
      this->child(0)->endpoint(1).set_handle(this->me);

      if(!this->parent()) {
        this->endpoint(0).set_handle(this->me);
        this->endpoint(1).set_handle(this->me);
      }
      else if(this->parent()->ty == Type::Compress) {
        if(parent_dir(this->me) == -1) {
          this->endpoint(0).set_handle(this->me);
        }
      }
      else if(this->parent()->ty == Type::Rake) {
        this->endpoint(0).set_handle(this->me);
      }

    }
    else if(this->ty == Type::Rake) {
      this->push();
      this->v[0] = this->child(0)->endpoint(0);
      this->v[1] = this->child(0)->endpoint(1);
      this->fo = cluster::rake(this->child(0)->fold(), this->child(1)->fold(),
          this->child(0)->endpoint(0).value(), this->child(1)->endpoint(0).value(), this->child(0)->endpoint(1).value());
    }
    else { assert(false); }
  }

  inline void push() {
    if(this->ty == Type::Compress) {
      if(this->rev) {
        std::swap(this->ch[0], this->ch[1]);
        this->child(0)->reverse();
        this->child(1)->reverse();
        this->rev = false;
      }
      this->child(0)->additive(this->add);
      this->child(1)->additive(this->add);
      if(this->rake()) this->rake()->additive(this->add);
      this->add = 0;
    }
    else if(this->ty == Type::Rake) {
      this->child(0)->additive(this->add);
      this->child(1)->additive(this->add);
      this->add = 0;
    }
  }

  inline void additive(i64 x) {
    this->fo.length += x * fo.path_cnt;
    if(this->ty == Type::Edge) {
    }
    else if(this->ty == Type::Compress) {
      this->add += x;
    }
    else if(this->ty == Type::Rake) {
      this->add += x;
    }
    else { assert(false); }
  }

  inline void reverse() {
    if(this->ty == Type::Edge) {
      std::swap(this->v[0], this->v[1]);
      this->fo = cluster::reverse(this->fold());
    }
    else if(this->ty == Type::Compress) {
      std::swap(this->v[0], this->v[1]);
      this->fo = cluster::reverse(this->fold());
      this->rev ^= true;
    }
    else if(this->ty == Type::Rake) {
    }
    else { assert(false); }
  }

  inline node* parent() const { return this->par; }
  inline void set_parent(node* par) { this->par = par; }
  inline node* rake() const { return this->ra; }
  inline void set_rake(node* rake) { this->ra = rake; }
  inline node* child(std::size_t dir) const { return this->ch[dir]; }
  inline void set_child(node* ch, std::size_t dir) { this->ch[dir] = ch; }
  inline vertex endpoint(std::size_t dir) { return this->v[dir]; }
  inline Type type() const { return this->ty; }

  cluster fold() const { return this->fo; }

  bool guard;
};

int parent_dir(node* child) {
  node* par = child->parent();
  if(par) {
    if(par->guard) { return -1; }
    else if(par->child(0) == child) { return 0; }
    else if(par->child(1) == child) { return 1; }
    else { return -1; }
  }
  else { return -1; }
}

int parent_dir_guard(node* child) {
  node* par = child->parent();
  if(par) {
    if(par->child(0) == child) { return 0; }
    else if(par->child(1) == child) { return 1; }
    else { return -1; }
  }
  else { return -1; }
}

void rotate(node* t, node* x, std::size_t dir) {
  node* y = x->parent();
  int par = parent_dir_guard(x);
  t->child(dir)->push();
  x->set_child(t->child(dir), dir ^ 1);
  t->child(dir)->set_parent(x);
  t->set_child(x, dir);
  x->set_parent(t);
  t->set_parent(y);
  if(par != -1) {
    y->set_child(t, par);
  }
  else if(y && y->type() == Type::Compress) {
    y->set_rake(t);
  }
  x->fix();
  t->fix();
  if(y && !y->guard) { y->fix(); }
}

void splay(node* t) {
  assert(t->type() != Type::Edge);
  t->push();

  while(parent_dir(t) != -1) {
    node* q = t->parent();
    if(q->type() != t->type()) break;
    if(parent_dir(q) != -1 && q->parent() && q->parent()->type() == q->type()) {
      node* r = q->parent();
      if(r->parent()) r->parent()->push();
      r->push();
      q->push();
      t->push();
      int qt_dir = parent_dir(t);
      int rq_dir = parent_dir(q);
      if(rq_dir == qt_dir) {
        rotate(q, r, rq_dir ^ 1);
        rotate(t, q, qt_dir ^ 1);
      }
      else {
        rotate(t, q, qt_dir ^ 1);
        rotate(t, r, rq_dir ^ 1);
      }
    }
    else {
      if(q->parent()) q->parent()->push();
      q->push();
      t->push();
      int qt_dir = parent_dir(t);
      rotate(t, q, qt_dir ^ 1);
    }
  }
}

node* expose_raw(node* t) {
  while(true) {
    assert(t->type() != Type::Rake);
    if(t->type() == Type::Compress) {
      splay(t);
    }
    node* n = nullptr;
    {
      node* par = t->parent();
      if(!par) { break; }
      else if(par->type() == Type::Rake) {
        par->push();
        splay(par);
        n = par->parent();
      }
      else if(par->type() == Type::Compress) {
        par->push();
        if(par->guard && parent_dir_guard(t) != -1) { break; }
        n = par;
      }
      else { assert(false); }
    }

    splay(n);

    
    int dir = parent_dir_guard(n);
    if(dir == -1 || n->parent()->type() == Type::Rake) dir = 0;
    if(dir == 1) {
      n->child(dir)->reverse();
      n->child(dir)->push();
      t->reverse();
      t->push();
    }
    int n_dir = parent_dir(t);
    if(n_dir != -1) {
      node* nch = n->child(dir);
      nch->push();
      node* rake = t->parent();
      rake->push();

      rake->set_child(nch, n_dir);
      nch->set_parent(rake);
      n->set_child(t, dir);
      t->set_parent(n);
      nch->fix();
      rake->fix();
      t->fix();
      n->fix();
      splay(rake);
    }
    else {
      node* nch = n->child(dir);
      nch->push();
      n->set_rake(nch);
      nch->set_parent(n);
      n->set_child(t, dir);
      t->set_parent(n);

      nch->fix();
      t->fix();
      n->fix();
    }
    if(t->type() == Type::Edge) {
      t = n;
    }
  }
  
  return t;
}

node* expose(vertex ver) {
  return expose_raw(ver.handle());
}

void soft_expose(vertex v, vertex u) {
  node* root = expose(v);
  if(v.handle() == u.handle()) {
    if(root->endpoint(1) == v || root->endpoint(0) == u) {
      root->reverse();
      root->push();
    }
    return;
  }
  root->guard = true;
  node* soot = expose(u);
  root->guard = false;
  root->fix();
  if(parent_dir(soot) == 0) {
    root->reverse();
    root->push();
  }
}

node* link(vertex v, vertex u, cluster weight) {
  if(!v.handle() && !u.handle()) {
    return node::new_edge(v, u, weight);
  }
  else {
    node* nnu = u.handle();
    node* nnv = v.handle();
    node* e = node::new_edge(v, u, weight);
    node* left = nullptr;

    if(!nnu) { left = e; }
    else {
      node* uu = expose_raw(nnu);
      uu->push();
      if(uu->endpoint(1) == u) {
        uu->reverse();
        uu->push();
      }
      if(uu->endpoint(0) == u) {
        node* nu = node::new_compress(e, uu);
        e->set_parent(nu);
        e->fix();
        uu->set_parent(nu);
        uu->fix();
        nu->fix();

        left = nu;
      }
      else {
        node* nu = uu;
        node* left_ch = nu->child(0);
        left_ch->push();

        nu->set_child(e, 0);
        e->set_parent(nu);
        e->fix();
        
        node* beta = nu->rake();
        node* rake = nullptr;
        if(beta) {
          beta->push();
          rake = node::new_rake(beta, left_ch);
          beta->set_parent(rake);
          left_ch->set_parent(rake);
          beta->fix();
          left_ch->fix();
        }
        else {
          rake = left_ch;
        }
        nu->set_rake(rake);
        rake->set_parent(nu);
        rake->fix();
        nu->fix();

        left = nu;
      }
    }

    if(!nnv) {}
    else {
      node* vv =expose_raw(nnv);
      vv->push();
      if(vv->endpoint(0) == v) {
        vv->reverse();
        vv->push();
      }
      if(vv->endpoint(1) == v) {
        node* top = node::new_compress(vv, left);
        vv->set_parent(top);
        left->set_parent(top);
        vv->fix();
        left->fix();
        top->fix();
      }
      else {
        node* nv = vv;
        node* right_ch = nv->child(1);
        right_ch->reverse();
        right_ch->push();

        nv->set_child(left, 1);
        left->set_parent(nv);
        left->fix();

        node* alpha = nv->rake();
        node* rake = nullptr;
        if(alpha) {
          alpha->push();
          rake = node::new_rake(alpha, right_ch);
          alpha->set_parent(rake);
          alpha->fix();
          right_ch->set_parent(rake);
          right_ch->fix();
        }
        else {
          rake = right_ch;
        }
        nv->set_rake(rake);
        rake->set_parent(nv);
        rake->fix();
        nv->fix();
      }
    }

    return e;
  }
}

void bring(node* root) {
  node* rake = root->rake();

  if(!rake) {
    node* left = root->child(0);
    //delete root, root = nullptr;
    left->set_parent(nullptr);
    left->fix();
  }
  else if(rake->type() == Type::Compress || rake->type() == Type::Edge) {
    rake->push();
    node* new_right = rake;
    new_right->reverse();
    new_right->push();

    root->set_child(new_right, 1);
    new_right->set_parent(root);

    root->set_rake(nullptr);

    new_right->fix();
    root->fix();
  }
  else if(rake->type() == Type::Rake) {
    rake->push();
    while(rake->child(1)->type() == Type::Rake) {
      rake->child(1)->push();
      rake = rake->child(1);
    }
    root->guard = true;
    splay(rake);
    root->guard = false;

    node* new_rake = rake->child(0);
    node* new_right = rake->child(1);

    //delete rake, rake = nullptr;
    new_right->reverse();
    new_right->push();

    root->set_child(new_right, 1);
    new_right->set_parent(root);

    root->set_rake(new_rake);
    new_rake->set_parent(root);

    new_rake->fix();
    new_right->fix();
    root->fix();
  }
}

void cut(vertex v, vertex u) {
  soft_expose(v, u);
  node* root = v.handle();
  root->push();
  node* right = root->child(1);
  right->set_parent(nullptr);

  right->reverse();
  right->push();

  bring(right);
  bring(root);
}

cluster path_query(vertex v, vertex u) {
  soft_expose(v, u);
  node* root = v.handle();
  root->push();
  if(root->endpoint(0) == v && root->endpoint(1) == u) {
    return root->fold();
  }
  else if(root->endpoint(0) == v) {
    return root->child(0)->fold();
  }
  else if(root->endpoint(1) == u) {
    return root->child(1)->fold();
  }
  else {
    root->child(1)->push();
    return root->child(1)->child(0)->fold();
  }
}

void subtree_additive(vertex v, vertex u, i64 x) {
  if(v == u) {
    node* r = expose(v);
    r->additive(x);
    return;
  }
  soft_expose(v, u);
  node* root = v.handle();
  root->push();
  if(root->endpoint(0) == v && root->endpoint(1) == u) {
  }
  else if(root->endpoint(0) == v) {
  }
  else if(root->endpoint(1) == u) {
  }
  else {
    root->child(1)->push();
    root->child(1)->child(1)->push();
    root->child(1)->child(1)->additive(x);
    if(root->child(1)->rake()) { root->child(1)->rake()->additive(x); }
  }
}

node ns[1010101];

#include <iostream>
#include <vector>
#include <tuple>

using namespace std;


int main() {
  i64 N;
  cin >> N;
  vector<vertex> vs;
  for(int i = 0;i < N;i++) {
    vs.push_back(vertex(i));
  }
  for(int i = 0;i < N - 1;i++) {
    i64 a, b, c;
    cin >> a >> b >> c;
    link(vs[a], vs[b], cluster(c, 1, 1));
  }

  i64 Q;
  cin >> Q;
  for(int i = 0;i < Q;i++) {
    i64 type;
    cin >> type;
    if(type == 1) {
      i64 a, x;
      cin >> a >> x;
      subtree_additive(vs[0], vs[a], x);
    }
    else {
      i64 b;
      cin >> b;
      if(b == 0) { cout << 0 << endl; }
      else { cout << path_query(vs[0], vs[b]).length << endl; }
    }
  }
}
0