結果
問題 | No.120 傾向と対策:門松列(その1) |
ユーザー | むらため |
提出日時 | 2019-10-01 06:41:11 |
言語 | Nim (2.0.2) |
結果 |
AC
|
実行時間 | 30 ms / 5,000 ms |
コード長 | 2,921 bytes |
コンパイル時間 | 2,861 ms |
コンパイル使用メモリ | 62,432 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-03 05:35:08 |
合計ジャッジ時間 | 3,405 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 25 ms
6,816 KB |
testcase_01 | AC | 30 ms
6,816 KB |
testcase_02 | AC | 15 ms
6,816 KB |
testcase_03 | AC | 30 ms
6,820 KB |
ソースコード
import sequtils,algorithm template times*(n:int,body) = (for _ in 0..<n: body) template `max=`*(x,y) = x = max(x,y) template `min=`*(x,y) = x = min(x,y) proc getchar_unlocked():char {. importc:"getchar_unlocked",header: "<stdio.h>" .} proc scan(): int = while true: let k = getchar_unlocked() if k < '0': break result = 10 * result + k.ord - '0'.ord import algorithm type BinaryHeap*[T] = ref object data*: seq[T] cmp*:proc(x,y:T):int proc revcmp[T](x,y:T):int = cmp[T](y,x) proc `[]`[T](heap: BinaryHeap[T], i: Natural): T {.inline.}= heap.data[i] proc siftdown[T](heap: var BinaryHeap[T], startpos, p: int) = var pos = p var newitem = heap[pos] while pos > startpos: let parentpos = (pos - 1) shr 1 let parent = heap[parentpos] if 0 <= heap.cmp(newitem, parent): break heap.data[pos] = parent pos = parentpos heap.data[pos] = newitem proc siftup[T](heap: var BinaryHeap[T], p: int) = let endpos = len(heap) var pos = p let startpos = pos let newitem = heap[pos] var childpos = 2*pos + 1 while childpos < endpos: let rightpos = childpos + 1 if rightpos < endpos and 0 <= heap.cmp(heap[childpos], heap[rightpos]): childpos = rightpos heap.data[pos] = heap[childpos] pos = childpos childpos = 2*pos + 1 heap.data[pos] = newitem siftdown(heap, startpos, pos) proc len*[T](heap: BinaryHeap[T]): int = heap.data.len proc push*[T](heap: var BinaryHeap[T], item: T) = heap.data.add(item) siftdown(heap, 0, len(heap)-1) proc pop*[T](heap: var BinaryHeap[T]): T = let lastelt = heap.data.pop() if heap.len > 0: result = heap[0] heap.data[0] = lastelt siftup(heap, 0) else: result = lastelt proc top*[T](heap: var BinaryHeap[T]): T = heap.data[0] proc poppush*[T](heap: var BinaryHeap[T], item: T): T = result = heap[0] heap.data[0] = item siftup(heap, 0) proc pushpop*[T](heap: var BinaryHeap[T], item: T): T = if heap.len > 0 and 0 > heap.cmp(heap[0], item): swap(item, heap[0]) siftup(heap, 0) return item proc clear*[T](heap: var BinaryHeap[T]) = heap.data.setLen(0) proc toSeq*[T](heap: BinaryHeap[T]): seq[T] = heap.data.sorted(cmp) proc `$`*[T](heap: BinaryHeap[T]): string = $heap.toSeq() iterator items*[T](heap:BinaryHeap[T]) : T = for v in heap.toSeq(): yield v proc newBinaryHeap*[T](cmp:proc(x,y:T):int) : BinaryHeap[T]= new(result) result.data = @[] result.cmp = cmp var q = newBinaryHeap[int](revcmp) proc solve() : int = let n = scan() var L = newSeq[int](n) for i in 0..<n: L[i] = scan() L.sort(cmp) var R = @[1] for i in 1..<n: if L[i-1] == L[i] : R[^1] += 1 else: R .add 1 if R.len < 3: return 0 q.clear() for r in R: q.push(r) while true: let a = q.pop() - 1 let b = q.pop() - 1 let c = q.pop() - 1 if a < 0 or b < 0 or c < 0 : return result += 1 q.push(b) q.push(c) q.push(a) scan().times: echo solve()