結果
問題 | No.901 K-ary εxtrεεmε |
ユーザー | toma |
提出日時 | 2019-10-04 22:12:40 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 394 ms / 3,000 ms |
コード長 | 3,652 bytes |
コンパイル時間 | 2,269 ms |
コンパイル使用メモリ | 193,680 KB |
実行使用メモリ | 28,928 KB |
最終ジャッジ日時 | 2024-10-04 06:18:54 |
合計ジャッジ時間 | 10,629 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 164 ms
28,928 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 4 ms
5,248 KB |
testcase_04 | AC | 4 ms
5,248 KB |
testcase_05 | AC | 4 ms
5,248 KB |
testcase_06 | AC | 3 ms
5,248 KB |
testcase_07 | AC | 254 ms
24,704 KB |
testcase_08 | AC | 259 ms
24,832 KB |
testcase_09 | AC | 253 ms
24,832 KB |
testcase_10 | AC | 262 ms
24,832 KB |
testcase_11 | AC | 254 ms
24,704 KB |
testcase_12 | AC | 250 ms
24,704 KB |
testcase_13 | AC | 247 ms
24,696 KB |
testcase_14 | AC | 245 ms
24,804 KB |
testcase_15 | AC | 246 ms
24,704 KB |
testcase_16 | AC | 239 ms
24,704 KB |
testcase_17 | AC | 323 ms
24,832 KB |
testcase_18 | AC | 331 ms
24,832 KB |
testcase_19 | AC | 326 ms
24,704 KB |
testcase_20 | AC | 320 ms
24,832 KB |
testcase_21 | AC | 332 ms
24,652 KB |
testcase_22 | AC | 241 ms
24,776 KB |
testcase_23 | AC | 243 ms
24,832 KB |
testcase_24 | AC | 242 ms
24,824 KB |
testcase_25 | AC | 239 ms
24,856 KB |
testcase_26 | AC | 234 ms
24,704 KB |
testcase_27 | AC | 384 ms
24,832 KB |
testcase_28 | AC | 387 ms
24,832 KB |
testcase_29 | AC | 394 ms
24,668 KB |
ソースコード
#include"bits/stdc++.h" using namespace std; #define REP(k,m,n) for(int (k)=(m);(k)<(n);(k)++) #define rep(i,n) REP((i),0,(n)) using ll = long long; using WGraph = vector<vector<pair<int, int>>>; using Graph = vector<vector<int>>; struct HLDecomposition { using pii = pair<int, int>; int n; Graph G; vector<int> vid, inv, par, depth, subsize, head, prev, next, type; HLDecomposition(const Graph& G_) : n(G_.size()), G(G_), vid(n, -1), inv(n), par(n), depth(n), subsize(n, 1), head(n), prev(n, -1), next(n, -1), type(n) {} void build(vector<int> roots = { 0 }) { int curtype = 0, pos = 0; for (int root : roots) { decide_heavy_edge(root); reconstruct(root, curtype++, pos); } } void decide_heavy_edge(int root) { stack<pii> st; par[root] = -1, depth[root] = 0; st.emplace(root, 0); while (!st.empty()) { int now = st.top().first; int& way = st.top().second; if (way < G[now].size()) { int child = G[now][way++]; if (child == par[now])continue; par[child] = now; depth[child] = depth[now] + 1; st.emplace(child, 0); } else { st.pop(); int maxsize = 0; for (auto child : G[now]) { if (child == par[now])continue; subsize[now] += subsize[child]; if (maxsize < subsize[child]) { maxsize = subsize[child]; prev[child] = now; next[now] = child; } } } } } void reconstruct(int root, int curtype, int& pos) { stack<int> st({ root }); while (!st.empty()) { int start = st.top(); st.pop(); for (int v = start; v != -1; v = next[v]) { type[v] = curtype; vid[v] = pos++; inv[vid[v]] = v; head[v] = start; for (auto child : G[v]) { if (child != par[v] && child != next[v]) { st.push(child); } } } } } int lca(int u, int v) { while (true) { if (vid[u] > vid[v])swap(u, v); if (head[u] == head[v])return u; v = par[head[v]]; } } }; void dfs(const WGraph& g, vector<ll>& d, int now, int par) { for (auto next : g[now]) { int v, w; tie(v, w) = next; if (v == par)continue; d[v] = d[now] + w; dfs(g, d, v, now); } } int main() { int N, Q; cin >> N; WGraph wg(N); Graph g(N); rep(i, N - 1) { int u, v, w; cin >> u >> v >> w; wg[u].emplace_back(v, w); wg[v].emplace_back(u, w); g[u].push_back(v); g[v].push_back(u); } HLDecomposition hld(g); hld.build(); vector<ll> d(N); dfs(wg, d, 0, -1); auto dist = [&](int l, int r) { return d[l] + d[r] - 2 * d[hld.lca(l, r)]; }; cin >> Q; while (Q--) { ll k; cin >> k; vector<ll> x(k); rep(i, k)cin >> x[i]; for_each(x.begin(), x.end(), [&](ll& v) {v = hld.vid[v]; }); sort(x.begin(), x.end()); for_each(x.begin(), x.end(), [&](ll& v) {v = hld.inv[v]; }); ll res = 0; rep(i, k) { res += dist(x[i], x[(i + 1) % k]); } cout << res / 2 << endl; } return 0; }