結果
| 問題 |
No.900 aδδitivee
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-10-05 00:15:01 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,666 bytes |
| コンパイル時間 | 2,035 ms |
| コンパイル使用メモリ | 186,140 KB |
| 実行使用メモリ | 55,552 KB |
| 最終ジャッジ日時 | 2024-10-03 09:58:39 |
| 合計ジャッジ時間 | 13,952 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | WA * 27 |
ソースコード
#include <bits/stdc++.h>
template<typename T>
struct Edge {
int from, to;
T cost;
Edge(int from, int to, T cost) {
this->from = from;
this->to = to;
this->cost = cost;
}
};
bool operator == (Edge<int> e1, Edge<int> e2) {
return e1.from == e2.from &&
e1.to == e2.to &&
e1.cost == e2.cost;
}
template<typename T>
using Edges = std::vector<Edge<T>>;
template<typename T>
using Graph = std::vector<Edges<T>>;
using namespace std;
using ll = long long;
using P = pair<int, int>;
using vi = vector<int>;
using vvi = vector<vector<int>>;
using vll = vector<ll>;
using vvll = vector<vector<ll>>;
const double eps = 1e-10;
const int MOD = 1000000007;
const int INF = 1000000000;
const ll LINF = 1ll<<50;
template<typename T>
void printv(const vector<T>& s) {
for(int i=0;i<(int)(s.size());++i) {
cout << s[i];
if(i == (int)(s.size())-1) cout << endl;
else cout << " ";
}
}
class LazySegmentTree
{
int n;
using T1 = ll;
using T2 = ll;
void eval(int k, int l, int r)
{
if (lazy[k] == 0)
return;
node[k] = node[k] + lazy[k];
if (r - l > 1)
{
lazy[2 * k + 1] = lazy[2 * k + 1] + lazy[k] / 2;
lazy[2 * k + 2] = lazy[2 * k + 2] + lazy[k] / 2;
}
lazy[k] = 0;
}
public:
std::vector<T1> node;
std::vector<T2> lazy;
LazySegmentTree(int _n)
{
int sz = _n;
n = 1;
while (n < sz)
n *= 2;
node.resize(2 * n - 1, 0);
lazy.resize(2 * n - 1, 0);
}
LazySegmentTree(int _n, T1 _v)
{
int sz = _n;
n = 1;
while (n < sz)
n *= 2;
node.resize(2 * n - 1, 0);
lazy.resize(2 * n - 1, 0);
for (int i = 0; i < sz; i++)
node[i + n - 1] = _v;
for (int i = n - 2; i >= 0; i--)
node[i] = node[i * 2 + 1] + node[i * 2 + 2];
}
void update(int a, int b, T2 val, int l = 0, int r = -1, int k = 0)
{
if (r < 0)
r = n;
eval(k, l, r);
if (b <= l || r <= a)
return;
if (a <= l && r <= b)
{
lazy[k] = lazy[k] + (r - l) * val;
eval(k, l, r);
}
else
{
int mid = (l + r) / 2;
update(a, b, val, l, mid, 2 * k + 1);
update(a, b, val, mid, r, 2 * k + 2);
node[k] = node[2 * k + 1] + node[2 * k + 2];
}
}
T1 query(int a, int b, int l = 0, int r = -1, int k = 0)
{
if (r < 0)
r = n;
eval(k, l, r);
if (b <= l || r <= a)
return 0;
if (a <= l && r <= b)
return node[k];
int mid = (l + r) / 2;
T1 vl = query(a, b, l, mid, 2 * k + 1);
T1 vr = query(a, b, mid, r, 2 * k + 2);
return vl + vr;
}
};
map<int, int> pl, mi;
void dfs(int now, const Graph<ll> &g, vector<ll> &dist, vector<ll> &depth, int &idx, int &plusidx, int &minusidx, vector<int> &plus, vector<int> &plused, vector<int> &minus, vector<int> &minusbeg) {
int sz = g[now].size();
for(int i=0;i<sz;++i) {
int next = g[now][i].to;
ll cost = g[now][i].cost;
dist[next] = dist[now] + cost;
depth[next] = depth[now] + 1;
plus[next] = idx++;
plusidx++;
pl[idx] = plusidx;
mi[idx] = minusidx;
minusbeg[next] = minusidx;
dfs(next, g, dist, depth, idx, plusidx, minusidx, plus, plused, minus, minusbeg);
plused[next] = plusidx;
minus[next] = idx++;
minusidx++;
pl[idx] = plusidx;
mi[idx] = minusidx;
}
}
int main() {
cin.tie(0);
cout << fixed << setprecision(10);
int n; cin >> n;
Graph<ll> g(n);
for(int i=0;i<n-1;++i) {
int u, v; ll w; cin >> u >> v >> w;
g[u].push_back(Edge<ll>(u, v, w));
}
vector<ll> dist(n);
vector<ll> depth(n);
vector<int> plus(n);
vector<int> plused(n);
vector<int> minus(n);
vector<int> minusbeg(n);
dist[0] = 0;
depth[0] = 0;
int idx = 0, plusidx = 0, minusidx = 0;
dfs(0, g, dist, depth, idx, plusidx, minusidx, plus, plused, minus, minusbeg);
LazySegmentTree lst1(idx), lst2(idx);
ll add0 = 0;
int q; cin >> q;
while(q > 0) {
q--;
int t; cin >> t;
if(t == 1) {
int a; ll x; cin >> a >> x;
if(a == 0) {
add0 += x;
continue;
}
lst1.update(pl[plus[a]]+1, plused[a], x);
lst2.update(minusbeg[a], mi[minus[a]], -x);
} else {
int b; cin >> b;
ll ans = dist[b] + add0 * depth[b];
ans += lst1.query(0, pl[plus[b]]+1);
ans += lst2.query(0, mi[minus[b]]);
cout << ans << endl;
}
}
}