結果
問題 | No.900 aδδitivee |
ユーザー | kimiyuki |
提出日時 | 2019-10-05 00:31:18 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 317 ms / 2,000 ms |
コード長 | 6,512 bytes |
コンパイル時間 | 2,712 ms |
コンパイル使用メモリ | 224,804 KB |
実行使用メモリ | 27,584 KB |
最終ジャッジ日時 | 2024-10-03 10:01:44 |
合計ジャッジ時間 | 10,115 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 283 ms
22,716 KB |
testcase_08 | AC | 284 ms
22,832 KB |
testcase_09 | AC | 287 ms
22,848 KB |
testcase_10 | AC | 286 ms
22,768 KB |
testcase_11 | AC | 281 ms
22,900 KB |
testcase_12 | AC | 278 ms
22,816 KB |
testcase_13 | AC | 278 ms
22,716 KB |
testcase_14 | AC | 287 ms
22,716 KB |
testcase_15 | AC | 274 ms
22,712 KB |
testcase_16 | AC | 273 ms
22,748 KB |
testcase_17 | AC | 278 ms
22,688 KB |
testcase_18 | AC | 284 ms
22,828 KB |
testcase_19 | AC | 282 ms
22,756 KB |
testcase_20 | AC | 282 ms
22,724 KB |
testcase_21 | AC | 286 ms
22,676 KB |
testcase_22 | AC | 317 ms
27,224 KB |
testcase_23 | AC | 315 ms
27,452 KB |
testcase_24 | AC | 311 ms
27,320 KB |
testcase_25 | AC | 312 ms
27,584 KB |
testcase_26 | AC | 309 ms
27,404 KB |
testcase_27 | AC | 308 ms
27,444 KB |
testcase_28 | AC | 307 ms
27,324 KB |
ソースコード
#include <bits/stdc++.h> #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) #define dump(x) cerr << #x " = " << x << endl using namespace std; template <class T> using reversed_priority_queue = priority_queue<T, vector<T>, greater<T> >; template <class T, class U> inline void chmax(T & a, U const & b) { a = max<T>(a, b); } template <class T, class U> inline void chmin(T & a, U const & b) { a = min<T>(a, b); } template <typename X, typename T> auto make_table(X x, T a) { return vector<T>(x, a); } template <typename X, typename Y, typename Z, typename... Zs> auto make_table(X x, Y y, Z z, Zs... zs) { auto cont = make_table(y, z, zs...); return vector<decltype(cont)>(x, cont); } template <typename T> ostream & operator << (ostream & out, vector<T> const & xs) { REP (i, (int)xs.size() - 1) out << xs[i] << ' '; if (not xs.empty()) out << xs.back(); return out; } /** * @arg g must be a tree * @note O(n) time * @note O(n) space on heap */ struct subtree_info_t { int parent; // in the entire tree int depth; // in the entire tree int size; // of the subtree int height; // of the subtree }; vector<subtree_info_t> prepare_subtree_info(vector<vector<int> > const & g, int root) { int n = g.size(); vector<subtree_info_t> info(n, (subtree_info_t) { -1, -1, -1, -1 }); vector<int> topological(n); topological[0] = root; info[root].parent = root; info[root].depth = 0; int r = 1; for (int l = 0; l < r; ++ l) { int i = topological[l]; for (int j : g[i]) if (j != info[i].parent) { topological[r ++] = j; info[j].parent = i; info[j].depth = info[i].depth + 1; } } while ((-- r) >= 0) { int i = topological[r]; info[i].size = 1; info[i].height = 0; for (int j : g[i]) if (j != info[i].parent) { info[i].size += info[j].size; info[i].height = max(info[i].height, info[j].height + 1); } } info[root].parent = -1; return info; } /** * @brief euler tour * @arg g must be a tree, directed or undirected * @note for constraints, see the unittest */ void do_euler_tour(vector<vector<int> > const & g, int root, vector<int> & tour, vector<int> & left, vector<int> & right) { int n = g.size(); tour.clear(); left.resize(n); right.resize(n); function<void (int, int)> go = [&](int x, int parent) { left[x] = tour.size(); tour.push_back(x); for (int y : g[x]) if (y != parent) { go(y, x); } right[x] = tour.size(); tour.push_back(x); }; go(root, -1); } template <class OperatorMonoid> struct dual_segment_tree { typedef typename OperatorMonoid::value_type operator_type; typedef typename OperatorMonoid::target_type value_type; int n; std::vector<operator_type> f; std::vector<value_type> a; const OperatorMonoid op; dual_segment_tree() = default; dual_segment_tree(int a_n, value_type initial_value, OperatorMonoid const & a_op = OperatorMonoid()) : op(a_op) { n = 1; while (n < a_n) n *= 2; a.resize(n, initial_value); f.resize(n - 1, op.unit()); } value_type point_get(int i) { // 0-based value_type acc = a[i]; for (i = (i + n) / 2; i > 0; i /= 2) { // 1-based acc = op.apply(f[i - 1], acc); } return acc; } void range_apply(int l, int r, operator_type z) { // 0-based, [l, r) assert (0 <= l and l <= r and r <= n); range_apply(0, 0, n, l, r, z); } void range_apply(int i, int il, int ir, int l, int r, operator_type z) { if (l <= il and ir <= r) { // 0-based if (i < f.size()) { f[i] = op.append(z, f[i]); } else { a[i - n + 1] = op.apply(z, a[i - n + 1]); } } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = op.unit(); range_apply(2 * i + 1, il, (il + ir) / 2, l, r, z); range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, z); } } void point_set(int i, value_type z) { range_apply(i, i + 1, op.unit()); // to flush lazed ops a[i + n - 1] = z; // bug?? } }; struct add_linear_function_monoid { typedef std::pair<int64_t, int64_t> value_type; typedef std::pair<int64_t, int64_t> target_type; add_linear_function_monoid() = default; value_type unit() const { return std::make_pair(0, 0); } value_type append(value_type g, value_type f) const { int64_t fst = f.first + g.first; int64_t snd = f.second + g.second; return std::make_pair(fst, snd); } target_type apply(value_type f, target_type x) const { int64_t fst = f.first + x.first; int64_t snd = f.second + x.second; return std::make_pair(fst, snd); } }; int main() { // input int n; cin >> n; vector<vector<int> > g(n); vector<tuple<int, int, int64_t> > edges; REP (i, n - 1) { int x, y; int64_t c; cin >> x >> y >> c; g[x].push_back(y); g[y].push_back(x); edges.emplace_back(x, y, c); } // prepare const int root = 0; auto info = prepare_subtree_info(g, root); vector<int> tour, left, right; do_euler_tour(g, root, tour, left, right); dual_segment_tree<add_linear_function_monoid> segtree(2 * n, make_pair(0, 0)); for (auto edge : edges) { int x, y; int64_t c; tie(x, y, c) = edge; int z = (left[x] <= left[y] and left[y] < right[x] ? y : x); segtree.range_apply(left[z], right[z], make_pair(0, c)); } // query int q; cin >> q; while (q --) { int type; cin >> type; if (type == 1) { int x; int64_t c; cin >> x >> c; segtree.range_apply(left[x], right[x], make_pair(c, - c * info[x].depth)); } else if (type == 2) { int y; cin >> y; int64_t a, b; tie(a, b) = segtree.point_get(left[y]); cout << a * info[y].depth + b << endl; } } return 0; }