結果
| 問題 |
No.213 素数サイコロと合成数サイコロ (3-Easy)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-10-05 18:55:20 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 882 ms / 3,000 ms |
| コード長 | 6,952 bytes |
| コンパイル時間 | 1,818 ms |
| コンパイル使用メモリ | 180,112 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-10-06 20:06:46 |
| 合計ジャッジ時間 | 4,894 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 2 |
ソースコード
// includes
#include <bits/stdc++.h>
using namespace std;
// macros
#define pb emplace_back
#define mk make_pair
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define bit(n) (1LL<<(n))
// functions
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
// types
using ll = long long int;
using P = pair<int, int>;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1000000007;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, -1, 0, 1};
// io
struct fast_io{
fast_io(){ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20);}
} fast_io_;
template<typename T>
T extgcd(T a, T b, T &x, T &y){
T d = a;
if(b != 0){
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}else{
x = 1, y = 0;
}
return d;
}
template <typename T>
T modinv(T a, T m){
long long x = 0, y = 0;
extgcd<long long>(a, m, x, y);
x %= m;
if(x < 0)x += m;
return x;
}
template <int MOD = int(1e9+7)>
struct LMatrix{
vector<vector<long long>> v;
int n, m;
LMatrix(int n_, int m_ = -1): n(n_), m(m_){
if(m < 0)m = n;
v.resize(n);
for(int i = 0; i < n; i++)v[i].resize(m);
}
void identity(){
assert(n == m);
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
v[i][j] = (i == j ? 1: 0);
}
}
}
vector<long long> &operator[](size_t i){
return v[i];
}
const vector<long long> &operator[](size_t i) const{
return v[i];
}
LMatrix operator*(const LMatrix &r) const{
assert(m == r.n);
int l = r.m;
LMatrix res(n, l);
for(int i = 0; i < n; i++){
for(int j = 0; j < l; j++){
res.v[i][j] = 0;
for(int k = 0; k < m; k++){
res.v[i][j] = (res.v[i][j] + v[i][k] * r.v[k][j] % MOD) % MOD;
}
}
}
return res;
}
LMatrix operator+(const LMatrix &r) const{
assert(n == r.n);
assert(m == r.m);
LMatrix res(n, m);
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
res[i][j] = (v[i][j] + r[i][j]) % MOD;
}
}
return res;
}
LMatrix operator-(const LMatrix &r) const{
assert(n == r.n);
assert(m == r.m);
LMatrix res(n, m);
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
res[i][j] = (v[i][j] - r[i][j]) % MOD;
if(res[i][j] < 0)res[i][j] += MOD;
}
}
return res;
}
template <typename T>
LMatrix operator*(T a) const{
LMatrix res = *this;
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
res[i][j] = a * res[i][j] % MOD;
}
}
return res;
}
LMatrix inv2() const{
assert(n == 2 && m == 2);
long long det = v[0][0] * v[1][1] % MOD - v[0][1] * v[1][0] % MOD;
if(det < 0)det += MOD;
assert(det != 0);
LMatrix res(2, 2);
long long inv = modinv(det, (long long)MOD);
res[0][0] = v[1][1];
res[1][1] = v[0][0];
res[1][0] = - v[1][0];
res[0][1] = - v[0][1];
for(int i = 0; i < n; i++){
for(int j = 0; j < m; j++){
res[i][j] %= MOD;
res[i][j] = res[i][j] * inv % MOD;
if(res[i][j] < 0)res[i][j] += MOD;
}
}
return res;
}
};
template <typename T, int MOD = int(1e9+7)>
LMatrix<MOD> operator*(T a, const LMatrix<MOD> b){
return b * a;
}
template <int MOD = int(1e9+7)>
LMatrix<MOD> powerm(LMatrix<MOD> &a, long long n){
long long tmp = n;
LMatrix<MOD> curr = a;
LMatrix<MOD> res(a.n);
res.identity();
while(tmp){
if(tmp % 2 == 1){
res = res * curr;
}
curr = curr * curr;
tmp /= 2;
}
return res;
}
int a[6] = {2, 3, 5, 7, 11, 13};
int b[6] = {4, 6, 8, 9, 10, 12};
ll d1[131], d2[131], nex[131];
ll dp1[7][7][131], dp2[7][7][131];
ll C[131];
int main(int argc, char const* argv[])
{
ll n;
int p, c;
cin >> n >> p >> c;
dp1[0][0][0] = 1;
rep(i, 6){
rep(j, p + 1){
rep(k, 131){
rep(l, j + 1){
if(k-l*a[i]>=0)(dp1[i+1][j][k] += dp1[i][j-l][k-l*a[i]]) %= mod;
}
}
}
}
dp2[0][0][0] = 1;
rep(i, 6){
rep(j, c + 1){
rep(k, 131){
rep(l, j + 1){
if(k-l*b[i]>=0)(dp2[i+1][j][k] += dp2[i][j-l][k-l*b[i]]) %= mod;
}
}
}
}
rep(i, 131)d1[i] = dp1[6][p][i];
rep(i, 131)d2[i] = dp2[6][c][i];
FOR(i, 1, 131){
rep(j, i + 1){
(C[i] += d1[j] * d2[i-j] % mod) %= mod;
}
}
LMatrix<> lm(130, 130);
rep(i, 129)lm[i+1][i] = 1;
rep(i, 130)lm[0][i] = C[i+1];
auto pm = powerm(lm, n);
ll res = pm[0][0];
FOR(i, 1, 130){
ll ai = pm[i][0];
ll cum = 0;
FOR(j, i + 1, 131){
cum = (cum + C[j]) % mod;
}
res = (res + ai * cum % mod) % mod;
}
cout << res << endl;
return 0;
}