結果
問題 | No.213 素数サイコロと合成数サイコロ (3-Easy) |
ユーザー | fumiphys |
提出日時 | 2019-10-05 18:55:20 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 882 ms / 3,000 ms |
コード長 | 6,952 bytes |
コンパイル時間 | 1,818 ms |
コンパイル使用メモリ | 180,112 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-10-06 20:06:46 |
合計ジャッジ時間 | 4,894 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 882 ms
5,248 KB |
testcase_01 | AC | 830 ms
5,248 KB |
ソースコード
// includes #include <bits/stdc++.h> using namespace std; // macros #define pb emplace_back #define mk make_pair #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define rep(i, n) FOR(i, 0, n) #define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--) #define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr) #define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr) #define all(x) (x).begin(),(x).end() #define sz(x) ((int)(x).size()) #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()) #define bit(n) (1LL<<(n)) // functions template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;} template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;} template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;} template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} // types using ll = long long int; using P = pair<int, int>; // constants const int inf = 1e9; const ll linf = 1LL << 50; const double EPS = 1e-10; const int mod = 1000000007; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, -1, 0, 1}; // io struct fast_io{ fast_io(){ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20);} } fast_io_; template<typename T> T extgcd(T a, T b, T &x, T &y){ T d = a; if(b != 0){ d = extgcd(b, a % b, y, x); y -= (a / b) * x; }else{ x = 1, y = 0; } return d; } template <typename T> T modinv(T a, T m){ long long x = 0, y = 0; extgcd<long long>(a, m, x, y); x %= m; if(x < 0)x += m; return x; } template <int MOD = int(1e9+7)> struct LMatrix{ vector<vector<long long>> v; int n, m; LMatrix(int n_, int m_ = -1): n(n_), m(m_){ if(m < 0)m = n; v.resize(n); for(int i = 0; i < n; i++)v[i].resize(m); } void identity(){ assert(n == m); for(int i = 0; i < n; i++){ for(int j = 0; j < n; j++){ v[i][j] = (i == j ? 1: 0); } } } vector<long long> &operator[](size_t i){ return v[i]; } const vector<long long> &operator[](size_t i) const{ return v[i]; } LMatrix operator*(const LMatrix &r) const{ assert(m == r.n); int l = r.m; LMatrix res(n, l); for(int i = 0; i < n; i++){ for(int j = 0; j < l; j++){ res.v[i][j] = 0; for(int k = 0; k < m; k++){ res.v[i][j] = (res.v[i][j] + v[i][k] * r.v[k][j] % MOD) % MOD; } } } return res; } LMatrix operator+(const LMatrix &r) const{ assert(n == r.n); assert(m == r.m); LMatrix res(n, m); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ res[i][j] = (v[i][j] + r[i][j]) % MOD; } } return res; } LMatrix operator-(const LMatrix &r) const{ assert(n == r.n); assert(m == r.m); LMatrix res(n, m); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ res[i][j] = (v[i][j] - r[i][j]) % MOD; if(res[i][j] < 0)res[i][j] += MOD; } } return res; } template <typename T> LMatrix operator*(T a) const{ LMatrix res = *this; for(int i = 0; i < n; i++){ for(int j = 0; j < n; j++){ res[i][j] = a * res[i][j] % MOD; } } return res; } LMatrix inv2() const{ assert(n == 2 && m == 2); long long det = v[0][0] * v[1][1] % MOD - v[0][1] * v[1][0] % MOD; if(det < 0)det += MOD; assert(det != 0); LMatrix res(2, 2); long long inv = modinv(det, (long long)MOD); res[0][0] = v[1][1]; res[1][1] = v[0][0]; res[1][0] = - v[1][0]; res[0][1] = - v[0][1]; for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ res[i][j] %= MOD; res[i][j] = res[i][j] * inv % MOD; if(res[i][j] < 0)res[i][j] += MOD; } } return res; } }; template <typename T, int MOD = int(1e9+7)> LMatrix<MOD> operator*(T a, const LMatrix<MOD> b){ return b * a; } template <int MOD = int(1e9+7)> LMatrix<MOD> powerm(LMatrix<MOD> &a, long long n){ long long tmp = n; LMatrix<MOD> curr = a; LMatrix<MOD> res(a.n); res.identity(); while(tmp){ if(tmp % 2 == 1){ res = res * curr; } curr = curr * curr; tmp /= 2; } return res; } int a[6] = {2, 3, 5, 7, 11, 13}; int b[6] = {4, 6, 8, 9, 10, 12}; ll d1[131], d2[131], nex[131]; ll dp1[7][7][131], dp2[7][7][131]; ll C[131]; int main(int argc, char const* argv[]) { ll n; int p, c; cin >> n >> p >> c; dp1[0][0][0] = 1; rep(i, 6){ rep(j, p + 1){ rep(k, 131){ rep(l, j + 1){ if(k-l*a[i]>=0)(dp1[i+1][j][k] += dp1[i][j-l][k-l*a[i]]) %= mod; } } } } dp2[0][0][0] = 1; rep(i, 6){ rep(j, c + 1){ rep(k, 131){ rep(l, j + 1){ if(k-l*b[i]>=0)(dp2[i+1][j][k] += dp2[i][j-l][k-l*b[i]]) %= mod; } } } } rep(i, 131)d1[i] = dp1[6][p][i]; rep(i, 131)d2[i] = dp2[6][c][i]; FOR(i, 1, 131){ rep(j, i + 1){ (C[i] += d1[j] * d2[i-j] % mod) %= mod; } } LMatrix<> lm(130, 130); rep(i, 129)lm[i+1][i] = 1; rep(i, 130)lm[0][i] = C[i+1]; auto pm = powerm(lm, n); ll res = pm[0][0]; FOR(i, 1, 130){ ll ai = pm[i][0]; ll cum = 0; FOR(j, i + 1, 131){ cum = (cum + C[j]) % mod; } res = (res + ai * cum % mod) % mod; } cout << res << endl; return 0; }