結果

問題 No.802 だいたい等差数列
ユーザー kimiyuki
提出日時 2019-10-07 02:22:02
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 15,811 bytes
コンパイル時間 4,179 ms
コンパイル使用メモリ 243,912 KB
最終ジャッジ日時 2025-01-07 21:12:06
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3 TLE * 1
other AC * 18 RE * 1 TLE * 11
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i))
#define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i))
#define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i))
#define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i))
#define ALL(x) begin(x), end(x)
#define dump(x) cerr << #x " = " << x << endl
using ll = long long;
using namespace std;
template <class T> using reversed_priority_queue = priority_queue<T, vector<T>, greater<T> >;
template <class T, class U> inline void chmax(T & a, U const & b) { a = max<T>(a, b); }
template <class T, class U> inline void chmin(T & a, U const & b) { a = min<T>(a, b); }
template <typename X, typename T> auto make_table(X x, T a) { return vector<T>(x, a); }
template <typename X, typename Y, typename Z, typename... Zs> auto make_table(X x, Y y, Z z, Zs... zs) { auto cont = make_table(y, z, zs...); return
    vector<decltype(cont)>(x, cont); }
template <typename T> ostream & operator << (ostream & out, vector<T> const & xs) { REP (i, (int)xs.size() - 1) out << xs[i] << ' '; if (not xs.empty
    ()) out << xs.back(); return out; }
template<typename Functor> struct fix_type { Functor functor; template<typename... Args> decltype(auto) operator() (Args && ... args) const & {
    return functor(functor, std::forward<Args>(args)...); } };
template<typename Functor> fix_type<typename std::decay<Functor>::type> fix(Functor && functor) { return { std::forward<Functor>(functor) }; }
inline constexpr int32_t modpow(uint_fast64_t x, uint64_t k, int32_t MOD) {
assert (0 <= x and x < MOD);
uint_fast64_t y = 1;
for (; k; k >>= 1) {
if (k & 1) (y *= x) %= MOD;
(x *= x) %= MOD;
}
assert (0 <= y and y < MOD);
return y;
}
inline int32_t modinv(int32_t value, int32_t MOD) {
assert (0 <= value and value < MOD);
assert (value != 0);
int64_t a = value, b = MOD;
int64_t x = 0, y = 1;
for (int64_t u = 1, v = 0; a; ) {
int64_t q = b / a;
x -= q * u; std::swap(x, u);
y -= q * v; std::swap(y, v);
b -= q * a; std::swap(b, a);
}
assert (value * x + MOD * y == b and b == 1);
if (x < 0) x += MOD;
assert (0 <= x and x < MOD);
return x;
}
template <int32_t MOD>
struct mint {
int32_t value;
mint() : value() {}
mint(int64_t value_) : value(value_ < 0 ? value_ % MOD + MOD : value_ >= MOD ? value_ % MOD : value_) {}
mint(int32_t value_, nullptr_t) : value(value_) {}
explicit operator bool() const { return value; }
inline constexpr mint<MOD> operator + (mint<MOD> other) const { return mint<MOD>(*this) += other; }
inline constexpr mint<MOD> operator - (mint<MOD> other) const { return mint<MOD>(*this) -= other; }
inline constexpr mint<MOD> operator * (mint<MOD> other) const { return mint<MOD>(*this) *= other; }
inline constexpr mint<MOD> & operator += (mint<MOD> other) { this->value += other.value; if (this->value >= MOD) this->value -= MOD; return *this
        ; }
inline constexpr mint<MOD> & operator -= (mint<MOD> other) { this->value -= other.value; if (this->value < 0) this->value += MOD; return *this
        ; }
inline constexpr mint<MOD> & operator *= (mint<MOD> other) { this->value = (uint_fast64_t)this->value * other.value % MOD; return *this; }
inline constexpr mint<MOD> operator - () const { return mint<MOD>(this->value ? MOD - this->value : 0, nullptr); }
inline constexpr mint<MOD> pow(uint64_t k) const { return mint<MOD>(modpow(value, k, MOD), nullptr); }
inline mint<MOD> inv() const { return mint<MOD>(modinv(value, MOD), nullptr); }
inline constexpr mint<MOD> operator / (mint<MOD> other) const { return *this * other.inv(); }
inline constexpr mint<MOD> operator /= (mint<MOD> other) { return *this *= other.inv(); }
inline constexpr bool operator == (mint<MOD> other) const { return value == other.value; }
inline constexpr bool operator != (mint<MOD> other) const { return value != other.value; }
};
template <int32_t MOD> mint<MOD> operator * (int64_t value, mint<MOD> n) { return mint<MOD>(value) * n; }
template <int32_t MOD> std::istream & operator >> (std::istream & in, mint<MOD> & n) { int64_t value; in >> value; n = value; return in; }
template <int32_t MOD> std::ostream & operator << (std::ostream & out, mint<MOD> n) { return out << n.value; }
template <int32_t PRIME> struct proth_prime {};
template <> struct proth_prime<1224736769> { static constexpr int a = 73, b = 24, g = 3; };
template <> struct proth_prime<1053818881> { static constexpr int a = 3 * 5 * 67, b = 20, g = 7; };
template <> struct proth_prime<1051721729> { static constexpr int a = 17 * 59, b = 20, g = 6; };
template <> struct proth_prime<1045430273> { static constexpr int a = 997, b = 20, g = 3; };
template <> struct proth_prime<1012924417> { static constexpr int a = 3 * 7 * 23, b = 21, g = 5; };
template <> struct proth_prime<1007681537> { static constexpr int a = 31 * 31, b = 20, g = 3; };
template <> struct proth_prime<1004535809> { static constexpr int a = 479, b = 21, g = 3; };
template <> struct proth_prime< 998244353> { static constexpr int a = 7 * 17, b = 23, g = 3; };
template <> struct proth_prime< 985661441> { static constexpr int a = 5 * 47, b = 22, g = 3; };
template <> struct proth_prime< 976224257> { static constexpr int a = 7 * 7 * 19, b = 20, g = 3; };
template <> struct proth_prime< 975175681> { static constexpr int a = 3 * 5 * 31, b = 21, g = 17; };
template <> struct proth_prime< 962592769> { static constexpr int a = 3 * 3 * 3 * 17, b = 21, g = 7; };
template <> struct proth_prime< 950009857> { static constexpr int a = 4 * 151, b = 21, g = 7; };
template <> struct proth_prime< 943718401> { static constexpr int a = 3 * 3 * 5 * 5, b = 22, g = 7; };
template <> struct proth_prime< 935329793> { static constexpr int a = 223, b = 22, g = 3; };
template <> struct proth_prime< 924844033> { static constexpr int a = 3 * 3 * 7 * 7, b = 21, g = 5; };
template <> struct proth_prime< 469762049> { static constexpr int a = 7, b = 26, g = 3; };
template <> struct proth_prime< 167772161> { static constexpr int a = 5, b = 25, g = 3; };
struct is_proth_prime_impl {
template <int32_t PRIME, class T> static auto check(T *) -> decltype(proth_prime<PRIME>::g, std::true_type());
template <int32_t PRIME, class T> static auto check(...) -> std::false_type;
};
template <int32_t PRIME>
struct is_proth_prime : decltype(is_proth_prime_impl::check<PRIME, nullptr_t>(nullptr)) {
};
/**
* @note O(N log N)
* @note radix-2, decimation-in-frequency, Cooley-Tukey
* @note cache std::polar (~ 2x faster)
*/
template <int32_t PRIME>
void ntt_inplace(std::vector<mint<PRIME> > & a, bool inverse) {
const int n = a.size();
const int log2_n = __builtin_ctz(n);
assert (n == 1 << log2_n);
assert (log2_n <= proth_prime<PRIME>::b);
// prepare rotors
std::vector<mint<PRIME> > ep, iep;
while ((int)ep.size() <= log2_n) {
ep.push_back(mint<PRIME>(proth_prime<PRIME>::g).pow(mint<PRIME>(-1).value / (1 << ep.size())));
iep.push_back(ep.back().inv());
}
// divide and conquer
std::vector<mint<PRIME> > b(n);
REP3 (i, 1, log2_n + 1) {
int w = 1 << (log2_n - i);
mint<PRIME> base = (inverse ? iep : ep)[i];
mint<PRIME> now = 1;
for (int y = 0; y < n / 2; y += w) {
REP (x, w) {
auto l = a[y << 1 | x];
auto r = now * a[y << 1 | x | w];
b[y | x] = l + r;
b[y | x | n >> 1] = l - r;
}
now *= base;
}
std::swap(a, b);
}
// div by n if inverse
if (inverse) {
auto n_inv = mint<PRIME>(n).inv();
REP (i, n) {
a[i] *= n_inv;
}
}
}
/*
* @brief a specialized version of Garner's algorithm
*/
template <int32_t MOD, int32_t MOD1, int32_t MOD2, int32_t MOD3>
mint<MOD> garner_algorithm(mint<MOD1> a1, mint<MOD2> a2, mint<MOD3> a3) {
static const auto r12 = mint<MOD2>(MOD1).inv();
static const auto r13 = mint<MOD3>(MOD1).inv();
static const auto r23 = mint<MOD3>(MOD2).inv();
a2 = (a2 - a1.value) * r12;
a3 = (a3 - a1.value) * r13;
a3 = (a3 - a2.value) * r23;
return mint<MOD>(a1.value) + a2.value * mint<MOD>(MOD1) + a3.value * (mint<MOD>(MOD1) * mint<MOD>(MOD2));
}
/*
* @arg eqns is equations like x = a_i (mod m_i)
* @return the minimal solution of given equations
*/
int32_t garner_algorithm(std::vector<std::pair<int32_t, int32_t> > eqns, int32_t MOD) {
eqns.emplace_back(0, MOD);
std::vector<int64_t> k(eqns.size(), 1);
std::vector<int64_t> c(eqns.size(), 0);
REP (i, eqns.size() - 1) {
int32_t a_i, m_i; std::tie(a_i, m_i) = eqns[i];
int32_t x = (a_i - c[i]) * modinv(k[i], m_i) % m_i;
if (x < 0) x += m_i;
assert (a_i == (k[i] * x + c[i]) % m_i);
REP3 (j, i + 1, eqns.size()) {
int32_t a_j, m_j; std::tie(a_j, m_j) = eqns[j];
(c[j] += k[j] * x) %= m_j;
(k[j] *= m_i) %= m_j;
}
}
return c.back();
}
template <int32_t MOD>
std::vector<mint<MOD> > ntt_convolution_small(const std::vector<mint<MOD> > & a, const std::vector<mint<MOD> > & b) {
std::vector<mint<MOD> > c(a.size() + b.size() - 1);
REP (i, a.size()) {
REP (j, b.size()) {
c[i + j] += a[i] * b[j];
}
}
return c;
}
/**
* @brief the convolution on Z/pZ
* @note O(N log N)
* @note (f \ast g)(i) = \sum_{0 \le j \lt i + 1} f(j) g(i - j)
*/
template <int32_t PRIME>
typename std::enable_if<is_proth_prime<PRIME>::value, std::vector<mint<PRIME> > >::type ntt_convolution(const std::vector<mint<PRIME> > & a_, const
    std::vector<mint<PRIME> > & b_) {
if (a_.size() <= 8 or b_.size() <= 8) return ntt_convolution_small(a_, b_);
int m = a_.size() + b_.size() - 1;
int n = (m == 1 ? 1 : 1 << (32 - __builtin_clz(m - 1)));
auto a = a_;
auto b = b_;
a.resize(n);
b.resize(n);
ntt_inplace(a, false);
ntt_inplace(b, false);
REP (i, n) {
a[i] *= b[i];
}
ntt_inplace(a, true);
return a;
}
template <int32_t MOD>
typename std::enable_if<not is_proth_prime<MOD>::value, std::vector<mint<MOD> > >::type ntt_convolution(const std::vector<mint<MOD> > & a, const std
    ::vector<mint<MOD> > & b) {
if (a.size() <= 8 or b.size() <= 8) return ntt_convolution_small(a, b);
constexpr int PRIMES[3] = { 1004535809, 998244353, 985661441 };
std::vector<mint<PRIMES[0]> > x0(a.size());
std::vector<mint<PRIMES[1]> > x1(a.size());
std::vector<mint<PRIMES[2]> > x2(a.size());
REP (i, a.size()) {
x0[i] = a[i].value;
x1[i] = a[i].value;
x2[i] = a[i].value;
}
std::vector<mint<PRIMES[0]> > y0(b.size());
std::vector<mint<PRIMES[1]> > y1(b.size());
std::vector<mint<PRIMES[2]> > y2(b.size());
REP (j, b.size()) {
y0[j] = b[j].value;
y1[j] = b[j].value;
y2[j] = b[j].value;
}
std::vector<mint<PRIMES[0]> > z0 = ntt_convolution<PRIMES[0]>(x0, y0);
std::vector<mint<PRIMES[1]> > z1 = ntt_convolution<PRIMES[1]>(x1, y1);
std::vector<mint<PRIMES[2]> > z2 = ntt_convolution<PRIMES[2]>(x2, y2);
std::vector<mint<MOD> > c(z0.size());
REP (k, z0.size()) {
c[k] = garner_algorithm<MOD>(z0[k], z1[k], z2[k]);
}
return c;
}
template <class T>
struct formal_power_series {
std::vector<T> a;
inline size_t size() const { return a.size(); }
inline bool empty() const { return a.empty(); }
inline T at(int i) const { return (i < size() ? a[i] : T(0)); }
inline const std::vector<T> & data() const { return a; }
formal_power_series() = default;
formal_power_series(const std::vector<T> & a_) : a(a_) { shrink(); }
formal_power_series(const std::initializer_list<T> & init) : a(init) { shrink(); }
template <class Iterator>
formal_power_series(Iterator first, Iterator last) : a(first, last) { shrink(); }
void shrink() { while (not a.empty() and a.back().value == 0) a.pop_back(); }
inline formal_power_series<T> operator + (const formal_power_series<T> & other) const {
return formal_power_series<T>(a) += other;
}
inline formal_power_series<T> operator - (const formal_power_series<T> & other) const {
return formal_power_series<T>(a) -= other;
}
inline formal_power_series<T> & operator += (const formal_power_series<T> & other) {
if (a.size() < other.a.size()) a.resize(other.a.size(), T(0));
REP (i, other.a.size()) a[i] += other.a[i];
return *this;
}
inline formal_power_series<T> & operator -= (const formal_power_series<T> & other) {
if (a.size() < other.a.size()) a.resize(other.a.size(), T(0));
REP (i, other.a.size()) a[i] -= other.a[i];
return *this;
}
inline formal_power_series<T> operator * (const formal_power_series<T> & other) const {
return formal_power_series<T>(ntt_convolution(a, other.a));
}
inline formal_power_series<T> operator * (T b) {
return formal_power_series<T>(a) *= b;
}
inline formal_power_series<T> & operator *= (T b) {
REP (i, size()) a[i] *= b;
return *this;
}
inline formal_power_series<T> integral() const {
std::vector<T> b(size() + 1);
REP (i, size()) {
b[i + 1] = a[i] / (i + 1);
}
return b;
}
inline formal_power_series<T> differential() const {
if (empty()) return *this;
std::vector<T> b(size() - 1);
REP (i, size() - 1) {
b[i] = a[i + 1] * (i + 1);
}
return b;
}
inline formal_power_series<T> modulo_x_to(int k) const {
return formal_power_series<T>(a.begin(), a.begin() + std::min<int>(size(), k));
}
formal_power_series<T> inv(int n) const {
assert (at(0) != 0);
formal_power_series<T> res { at(0).inv() };
for (int i = 1; i < n; i *= 2) {
res = (res * T(2) - res * res * modulo_x_to(2 * i)).modulo_x_to(2 * i);
}
return res.modulo_x_to(n);
}
formal_power_series<T> exp(int n) const {
formal_power_series<T> f{ 1 };
formal_power_series<T> g{ 1 };
for (int i = 1; i < n; i *= 2) {
g = (g * 2 - f * g * g).modulo_x_to(i);
formal_power_series<T> q = differential().modulo_x_to(i - 1);
formal_power_series<T> w = (q + g * (f.differential() - f * q)).modulo_x_to(2 * i - 1);
f = (f + f * (*this - w.integral()).modulo_x_to(2 * i)).modulo_x_to(2 * i);
}
return f.modulo_x_to(n);
}
inline formal_power_series<T> log(int n) const {
assert (at(0) == 1);
return (this->differential() * this->inv(n - 1)).modulo_x_to(n - 1).integral();
}
inline formal_power_series<T> pow(int k, int n) const {
return (this->log(n) * k).exp(n);
}
};
constexpr int MOD = 1000000007;
mint<MOD> solve(int64_t n, int64_t m, int64_t d1, int64_t d2) {
int64_t m1 = m - 1 - (n - 1) * d1;
int64_t d3 = d2 - d1;
if (m1 < 0) return 0;
if (d3 == 0) return m1 + 1;
formal_power_series<mint<MOD> > f(vector<mint<MOD> >(min(m1, d3) + 1, 1));
formal_power_series<mint<MOD> > g(vector<mint<MOD> >(m1 + 1, 1));
vector<mint<MOD> > dp = (f.pow(n - 1, m1 + 1) * g).modulo_x_to(m1 + 1).data();
return accumulate(ALL(dp), mint<MOD>());
}
int main() {
int64_t n, m, d1, d2; cin >> n >> m >> d1 >> d2;
cout << solve(n, m, d1, d2) << endl;
assert (is_proth_prime<998244353>::value);
assert (not is_proth_prime<3>::value);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0