結果
| 問題 |
No.776 A Simple RMQ Problem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-10-07 22:39:28 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 610 ms / 3,000 ms |
| コード長 | 5,774 bytes |
| コンパイル時間 | 2,417 ms |
| コンパイル使用メモリ | 182,372 KB |
| 実行使用メモリ | 17,408 KB |
| 最終ジャッジ日時 | 2024-10-15 00:18:09 |
| 合計ジャッジ時間 | 12,993 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 26 |
ソースコード
#include"bits/stdc++.h"
using namespace std;
#define REP(k,m,n) for(int (k)=(m);(k)<(n);(k)++)
#define rep(i,n) REP((i),0,(n))
using ll = long long;
constexpr ll INF = 1ll << 60;
template<typename Monoid, typename OperatorMonoid = Monoid>
class LazySegmentTree {
private:
using F = function<Monoid(Monoid, Monoid)>;
using G = function<Monoid(Monoid, OperatorMonoid, int)>;
using H = function<OperatorMonoid(OperatorMonoid, OperatorMonoid)>;
int sz; // 対応する配列の幅
vector<Monoid> data;
vector<OperatorMonoid> lazy;
const F f; // 2区間マージ演算(data-data-ボトムアップマージ)
const G g; // 要素,作用素マージ演算(lazy->data同位置変換時の、(data,lazy,len)の計算)
const H h; // 作用素マージ演算 (query->lazyトップダウン伝搬時の、(lazy,query_value)の計算)
const Monoid M1; // モノイド単位元 (data単位元)
const OperatorMonoid OM0; // 作用素単位元 (lazy単位元)
void propagate(int idx, int len) {
// 幅lenのlazy[idx]が存在するとき、値を下に流す
if (lazy[idx] != OM0) {
if (idx < sz) {
lazy[(idx << 1) | 0] = h(lazy[(idx << 1) | 0], lazy[idx]);
lazy[(idx << 1) | 1] = h(lazy[(idx << 1) | 1], lazy[idx]);
}
data[idx] = g(data[idx], lazy[idx], len);
lazy[idx] = OM0;
}
}
Monoid update_impl(int a, int b, const OperatorMonoid& val, int idx, int l, int r) {
propagate(idx, r - l);
if (r <= a || b <= l)return data[idx];
else if (a <= l && r <= b) {
lazy[idx] = h(lazy[idx], val);
propagate(idx, r - l);
return data[idx];
}
else return data[idx] = f(
update_impl(a, b, val, (idx << 1) | 0, l, (l + r) >> 1),
update_impl(a, b, val, (idx << 1) | 1, (l + r) >> 1, r)
);
}
Monoid query_impl(int a, int b, int idx, int l, int r) {
propagate(idx, r - l);
if (r <= a || b <= l)return M1;
else if (a <= l && r <= b)return data[idx];
else return f(
query_impl(a, b, (idx << 1) | 0, l, (l + r) >> 1),
query_impl(a, b, (idx << 1) | 1, (l + r) >> 1, r)
);
}
public:
// init忘れに注意
LazySegmentTree(int n, const F f, const G g, const H h,
const Monoid& M1, const OperatorMonoid OM0)
:f(f), g(g), h(h), M1(M1), OM0(OM0) {
sz = 1;
while (sz < n)sz <<= 1;
data.assign(2 * sz, M1);
lazy.assign(2 * sz, OM0);
}
void build(const vector<Monoid>& vals) {
rep(idx, vals.size())data[idx + sz] = vals[idx];
for (int idx = sz - 1; idx > 0; idx--) {
data[idx] = f(data[(idx << 1) | 0], data[(idx << 1) | 1]);
}
}
Monoid update(int a, int b, const OperatorMonoid& val) {
return update_impl(a, b, val, 1, 0, sz);
}
Monoid query(int a, int b) {
return query_impl(a, b, 1, 0, sz);
}
Monoid operator[](const int& idx) {
return query(idx, idx + 1);
}
};
int main()
{
// total, left, middle, right
using ar4 = array<ll, 4>;
constexpr ar4 arINF = { INF,INF,INF,INF };
auto f = [](ar4 vl, ar4 vr) {
if (vl[0] == INF)return vr;
if (vr[0] == INF)return vl;
ll mid = vl[3] + vr[1];
mid = max(mid, *max_element(vl.begin(), vl.end()));
mid = max(mid, *max_element(vr.begin(), vr.end()));
auto res = ar4({
vl[0] + vr[0],
max(vl[1], vl[0] + vr[1]),
mid,
max(vl[3] + vr[0], vr[3])
});
return res;
};
auto g = [](ar4 data, ll lazy, int len) {
if (lazy == INF)return data;
ll info = lazy >= 0 ? lazy * len : lazy;
return ar4({
lazy * len,
info,
info,
info
});
};
auto h = [](ll lazy, ll query) {
return query == INF ? lazy : query;
};
int n, q;
cin >> n >> q;
vector<ll> a(n);
vector<ar4> b(n);
rep(i, n) {
cin >> a[i];
b[i] = { a[i], a[i],a[i],a[i] };
}
LazySegmentTree<ar4, ll> lst(n, f, g, h, arINF, INF);
lst.build(b);
while (q--) {
string type;
cin >> type;
if (type == "set") {
ll i, x;
cin >> i >> x;
i--;
lst.update(i, i + 1, x);
}
else {
ll l1, l2, r1, r2, res;
cin >> l1 >> l2 >> r1 >> r2;
l1--; l2--; r1--; r2--;
// inclusive
r1 = max(l1, r1);
l2 = min(r2, l2);
if (l2 < r1) {
res = lst.query(l1, l2 + 1)[3]
+ (l2 + 1 < r1 ? lst.query(l2 + 1, r1)[0] : 0)
+ lst.query(r1, r2 + 1)[1];
}
else {
ll res1 = lst.query(r1, l2 + 1)[2];
ll res2 = lst.query(l1, r1)[3] + lst.query(r1, r2 + 1)[1];
ll res3 = lst.query(r1, l2 + 1)[3] + lst.query(l2 + 1, r2 + 1)[1];
//auto tmp = lst[2];
//cerr << "res1: [" << r1 << ", " << l2 << "]" << res1 << endl;
//cerr << "res2: [" << l1 << ", " << r1 << ", " << r2 << "]"
// << res2 << "=" << lst[2][0] << "," << lst[3][0] << endl;
//cerr << "res3: [" << r1 << ", " << l2 << ", " << r2 << "]" << res3 << endl;
if (res1 > INF / 2)res1 = -INF;
if (res2 > INF / 2)res2 = -INF;
if (res3 > INF / 2)res3 = -INF;
res = max(res1, max(res2, res3));
}
cout << res << endl;
}
}
return 0;
}