結果

問題 No.245 貫け!
ユーザー fumiphysfumiphys
提出日時 2019-10-10 02:39:57
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 7 ms / 5,000 ms
コード長 7,117 bytes
コンパイル時間 1,652 ms
コンパイル使用メモリ 170,816 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-18 20:04:25
合計ジャッジ時間 2,584 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 4 ms
5,248 KB
testcase_12 AC 7 ms
5,248 KB
testcase_13 AC 7 ms
5,248 KB
testcase_14 AC 7 ms
5,248 KB
testcase_15 AC 7 ms
5,248 KB
testcase_16 AC 7 ms
5,248 KB
testcase_17 AC 7 ms
5,248 KB
testcase_18 AC 7 ms
5,248 KB
testcase_19 AC 7 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// includes
#include <bits/stdc++.h>
using namespace std;

// macros
#define pb emplace_back
#define mk make_pair
#define FOR(i, a, b) for(int i=(a);i<(b);++i)
#define rep(i, n) FOR(i, 0, n)
#define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--)
#define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr)
#define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr)
#define all(x) (x).begin(),(x).end()
#define sz(x) ((int)(x).size())
#define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end())
#define bit(n) (1LL<<(n))
// functions
template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;}
template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;}
template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;}
template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;}
//  types
using ll = long long int;
using P = pair<int, int>;
// constants
const int inf = 1e9;
const ll linf = 1LL << 50;
const double EPS = 1e-10;
const int mod = 1000000007;
const int dx[4] = {-1, 0, 1, 0};
const int dy[4] = {0, -1, 0, 1};
// io
struct fast_io{
  fast_io(){ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20);}
} fast_io_;

struct point2d{
  ll x, y;
  point2d(){}
  point2d(ll x, ll y): x(x), y(y){}
  point2d operator+(const point2d &r) const{
    return point2d(x + r.x, y + r.y);
  }
  point2d operator-(const point2d &r) const{
    return point2d(x - r.x, y - r.y);
  }
  point2d& operator+=(const point2d &r){
    *this = *this + r;
    return *this;
  }
  point2d& operator-=(const point2d &r){
    *this = *this - r;
    return *this;
  }
  bool operator==(const point2d &r) const{
    return abs(x - r.x) < EPS && abs(y - r.y) < EPS;
  }
  bool operator!=(const point2d &r) const{
    return !(*this == r);
  }
  bool operator<(const point2d &r) const{
    if(abs(x - r.x) >= EPS)return x < r.x;
    return y < r.y;
  }
};

point2d operator*(ll x, const point2d &p){
  return point2d(x * p.x, x * p.y);
}

point2d operator/(const point2d &p, ll x){
  return point2d(p.x / x, p.y / x);
}

ll norm(const point2d &a){
  return sqrt(a.x * a.x + a.y * a.y);
}

ll dis(const point2d &a, const point2d &b){
  point2d c = a - b;
  return norm(c);
}

ll inner_product(const point2d &a, const point2d &b){
  return a.x * b.x + a.y * b.y;
}

ll outer_product(const point2d &a, const point2d &b){
  return a.x * b.y - a.y * b.x;
}

ll cosine(const point2d &a, const point2d &b){
  return inner_product(a, b) / norm(a) / norm(b);
}

ll cross(const point2d &o, const point2d &a, const point2d &b){
  return outer_product(a - o, b - o);
}

struct plane2d{
  ll a, b, c;
  ll norm;
  plane2d(){}
  plane2d(ll a, ll b, ll c): a(a), b(b), c(c){}
  plane2d(const point2d &p, const point2d &q){
    point2d l = p - q;
    a = l.y, b = - l.x;
    c = - a * p.x - b * p.y;
    build();
  }
  void build(){
    norm = sqrt(a * a + b * b);
  }
  ll dis(const point2d &p){
    return abs(a * p.x + b * p.y + c) / norm;
  }
  ll val(const point2d &p){
    return a * p.x + b * p.y + c;
  }
};

bool parallel(const plane2d &p, const plane2d &q){
  return abs(p.a * q.b - p.b * q.a) < EPS;
}

bool orthogonal(const plane2d &p, const plane2d &q){
  return abs(p.a * q.a + p.b * q.b) < EPS;
}

bool intersection(const point2d &p1, const point2d &p2, const point2d &p3, const point2d &p4){
  plane2d pl1(p1, p2), pl2(p3, p4);
  if(abs(pl1.val(p3)) < EPS && min(p1.x, p2.x) <= p3.x && p3.x <= max(p1.x, p2.x) &&
      min(p1.y, p2.y) <= p3.y && p3.y <= max(p1.y, p2.y))return true;
  if(abs(pl1.val(p4)) < EPS && min(p1.x, p2.x) <= p4.x && p4.x <= max(p1.x, p2.x) &&
      min(p1.y, p2.y) <= p4.y && p4.y <= max(p1.y, p2.y))return true;
  if(abs(pl2.val(p1)) < EPS && min(p3.x, p4.x) <= p1.x && p1.x <= max(p3.x, p4.x) &&
      min(p3.y, p4.y) <= p1.y && p1.y <= max(p3.y, p4.y))return true;
  if(abs(pl2.val(p2)) < EPS && min(p3.x, p4.x) <= p2.x && p2.x <= max(p3.x, p4.x) &&
      min(p3.y, p4.y) <= p2.y && p2.y <= max(p3.y, p4.y))return true;
  return pl1.val(p3) * pl1.val(p4) <= - EPS && pl2.val(p1) * pl2.val(p2) <= - EPS;
}

ll A[101], b[101], C[101], d[101];

int main(int argc, char const* argv[])
{
  int n; cin >> n;
  rep(i, n)cin >> A[i] >> b[i] >> C[i] >> d[i];
  int res = 1;
  rep(i, n){
    FOR(j, i + 1, n){
      plane2d pl;
      int tmp = 0;
      if(A[i] != A[j] || b[i] != b[j]){
        pl = plane2d(point2d(A[i], b[i]), point2d(A[j], b[j]));
        tmp = 0;
        rep(k, n){
          if(pl.val(point2d(A[k], b[k])) * pl.val(point2d(C[k], d[k])) <= 0)tmp++;
        }
        res = max(res, tmp);
      }
      if(A[i] != C[j] || b[i] != d[j]){
        pl = plane2d(point2d(A[i], b[i]), point2d(C[j], d[j]));
        tmp = 0;
        rep(k, n){
          if(pl.val(point2d(A[k], b[k])) * pl.val(point2d(C[k], d[k])) <= 0)tmp++;
        }
        res = max(res, tmp);
      }
      if(C[i] != A[j] || d[i] != b[j]){
        pl = plane2d(point2d(C[i], d[i]), point2d(A[j], b[j]));
        tmp = 0;
        rep(k, n){
          if(pl.val(point2d(A[k], b[k])) * pl.val(point2d(C[k], d[k])) <= 0)tmp++;
        }
        res = max(res, tmp);
      }
      if(C[i] != C[j] || d[i] != d[j]){
        pl = plane2d(point2d(C[i], d[i]), point2d(C[j], d[j]));
        tmp = 0;
        rep(k, n){
          if(pl.val(point2d(A[k], b[k])) * pl.val(point2d(C[k], d[k])) <= 0)tmp++;
        }
        res = max(res, tmp);
      }
    }
  }
  cout << res << endl;
  return 0;
}
0