結果
問題 | No.214 素数サイコロと合成数サイコロ (3-Medium) |
ユーザー | Haar |
提出日時 | 2019-10-10 18:24:12 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 670 ms / 3,000 ms |
コード長 | 7,001 bytes |
コンパイル時間 | 2,298 ms |
コンパイル使用メモリ | 221,192 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-21 16:52:33 |
合計ジャッジ時間 | 5,323 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 657 ms
6,820 KB |
testcase_01 | AC | 670 ms
6,816 KB |
testcase_02 | AC | 669 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> #define LLI long long int #define FOR(v, a, b) for(LLI v = (a); v < (b); ++v) #define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(LLI v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define fst first #define snd second #define popcount __builtin_popcount #define UNIQ(v) (v).erase(unique(ALL(v)), (v).end()) #define bit(i) (1LL<<(i)) #ifdef DEBUG #include <misc/C++/Debug.cpp> #else #define dump(...) ((void)0) #endif #define gcd __gcd using namespace std; template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;} template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;} template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);} template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);} template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} struct Init{ Init(){ cin.tie(0); ios::sync_with_stdio(false); } }init; template <uint32_t M> class ModInt{ public: uint64_t val; ModInt(): val(0){} ModInt(int64_t n){ if(n >= M) val = n % M; else if(n < 0) val = n % M + M; else val = n; } inline constexpr ModInt operator+(const ModInt &a) const {return ModInt((val+a.val)%M);} inline constexpr ModInt operator-(const ModInt &a) const {return ModInt((val-a.val+M)%M);} inline constexpr ModInt operator*(const ModInt &a) const {return ModInt((val*a.val)%M);} inline constexpr ModInt operator/(const ModInt &a) const {return ModInt((val*a.inv().val)%M);} inline constexpr ModInt& operator=(const ModInt &a){val = a.val; return *this;} inline constexpr ModInt& operator+=(const ModInt &a){if((val += a.val) >= M) val -= M; return *this;} inline constexpr ModInt& operator-=(const ModInt &a){if(val < a.val) val += M; val -= a.val; return *this;} inline constexpr ModInt& operator*=(const ModInt &a){(val *= a.val) %= M; return *this;} inline constexpr ModInt& operator/=(const ModInt &a){(val *= a.inv().val) %= M; return *this;} inline constexpr bool operator==(const ModInt &a) const {return val==a.val;} inline constexpr bool operator!=(const ModInt &a) const {return val!=a.val;} inline constexpr ModInt& operator++(){*this += 1; return *this;} inline constexpr ModInt& operator--(){*this -= 1; return *this;} inline constexpr ModInt operator++(int){ModInt t = *this; *this += 1; return t;} inline constexpr ModInt operator--(int){ModInt t = *this; *this -= 1; return t;} inline constexpr static ModInt power(int64_t n, int64_t p){ ModInt ret = 1, e = n; for(; p; e *= e, p >>= 1) if(p&1) ret *= e; return ret; } inline constexpr ModInt power(int64_t p) const {return power(val,p);} inline constexpr ModInt inv() const { int64_t a = val, b = M, u = 1, v = 0; while(b){ int64_t t = a/b; a -= t*b; swap(a,b); u -= t*v; swap(u,v); } u %= M; if(u < 0) u += M; return u; } }; template <uint32_t M> ModInt<M> operator-(const ModInt<M> &a){return M-a.val;} template <uint32_t M> ModInt<M> operator+(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)+b.val);} template <uint32_t M> ModInt<M> operator-(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)-b.val);} template <uint32_t M> ModInt<M> operator*(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)*b.val);} template <uint32_t M> ModInt<M> operator/(int64_t a, const ModInt<M> &b){return ModInt<M>(ModInt<M>(a)/b.val);} template <uint32_t M> istream& operator>>(istream &is, ModInt<M> &a){is >> a.val; return is;} template <uint32_t M> ostream& operator<<(ostream &os, const ModInt<M> &a){ os << a.val; return os;} template <typename T> struct KitamasaAlgorithm{ int size; vector<T> initial_values, coeff; KitamasaAlgorithm(int size, const vector<T> &initial_values, const vector<T> &coeff): size(size), initial_values(initial_values), coeff(coeff){} inline vector<T> inc(const vector<T> &a){ vector<T> ret(size); REP(i,size) ret[i] += a[size-1] * coeff[i]; FOR(i,1,size) ret[i] += a[i-1]; return ret; } inline vector<T> dbl(const vector<T> &a){ vector<T> ret(size), b(a); REP(j,size){ REP(i,size){ ret[i] += a[j] * b[i]; } b = inc(b); } return ret; } inline T at(int64_t index){ if(index < size) return initial_values[index]; return calc(get(index)); } inline T calc(const vector<T> &v){ T ret = 0; REP(i,size) ret += v[i] * initial_values[i]; return ret; } inline vector<T> get(int64_t index){ vector<T> ret(size); ret[0] = 1; for(int i = 63; i >= 0; --i){ ret = dbl(ret); //dump(i); if(index & (1LL << i)){ ret = inc(ret); } } return ret; } }; using mint = ModInt<1000000007>; constexpr int prime_dice[6] = {2,3,5,7,11,13}; constexpr int composite_dice[6] = {4,6,8,9,10,12}; constexpr int MAX = 1300; int main(){ LLI N,P,C; while(cin >> N >> P >> C){ vector<vector<mint>> dp(P+C+1, vector<mint>(MAX)); dp[0][0] = 1; for(auto x : composite_dice){ vector<vector<mint>> temp(P+C+1, vector<mint>(MAX)); REPE(i,C){ REP(j,MAX){ FORE(k,0,C){ if(i+k <= C and j+x*k < MAX){ temp[i+k][j+x*k] += dp[i][j]; } } } } swap(dp, temp); } for(auto x : prime_dice){ vector<vector<mint>> temp(P+C+1, vector<mint>(MAX)); FORE(i,C,C+P){ REP(j,MAX){ FORE(k,0,P){ if(i+k <= C+P and j+x*k < MAX){ temp[i+k][j+x*k] += dp[i][j]; } } } } swap(dp, temp); } vector<mint> a(MAX-1); vector<mint> b(dp[C+P]); a[0] = 1; REP(i,MAX-1){ FOR(j,1,MAX){ if(i-j >= 0) a[i] += a[i-j] * dp[C+P][j]; } } reverse(ALL(b)); b.pop_back(); KitamasaAlgorithm<mint> ka(MAX-1, a, b); map<LLI,mint> dp2; { LLI i = max<LLI>(0,N-MAX); auto t = ka.get(i); for(; i <= N; ++i){ dp2[i] = ka.calc(t); t = ka.inc(t); } FORE(i,N+1,N+MAX){ FOR(j,1,MAX){ if(i-j >= 0 and i-j < N) dp2[i] += dp[C+P][j] * dp2[i-j]; } } } mint ans = 0; FOR(i,N,N+MAX) ans += dp2[i]; cout << ans << endl; } return 0; }