結果
問題 | No.251 大きな桁の復習問題(1) |
ユーザー | fumiphys |
提出日時 | 2019-10-11 00:12:58 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 14,045 bytes |
コンパイル時間 | 2,582 ms |
コンパイル使用メモリ | 191,328 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-22 05:13:31 |
合計ジャッジ時間 | 3,642 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | WA | - |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | AC | 19 ms
5,248 KB |
testcase_10 | AC | 19 ms
5,248 KB |
testcase_11 | AC | 19 ms
5,248 KB |
testcase_12 | AC | 19 ms
5,248 KB |
testcase_13 | AC | 19 ms
5,248 KB |
testcase_14 | AC | 18 ms
5,248 KB |
testcase_15 | AC | 19 ms
5,248 KB |
testcase_16 | AC | 19 ms
5,248 KB |
testcase_17 | AC | 19 ms
5,248 KB |
testcase_18 | AC | 19 ms
5,248 KB |
testcase_19 | AC | 19 ms
5,248 KB |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | AC | 2 ms
5,248 KB |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | AC | 2 ms
5,248 KB |
ソースコード
// includes #include <bits/stdc++.h> using namespace std; // macros #define pb emplace_back #define mk make_pair #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define rep(i, n) FOR(i, 0, n) #define rrep(i, n) for(int i=((int)(n)-1);i>=0;i--) #define irep(itr, st) for(auto itr = (st).begin(); itr != (st).end(); ++itr) #define irrep(itr, st) for(auto itr = (st).rbegin(); itr != (st).rend(); ++itr) #define all(x) (x).begin(),(x).end() #define sz(x) ((int)(x).size()) #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()) #define bit(n) (1LL<<(n)) // functions template <class T>bool chmax(T &a, const T &b){if(a < b){a = b; return 1;} return 0;} template <class T>bool chmin(T &a, const T &b){if(a > b){a = b; return 1;} return 0;} template <typename T> istream &operator>>(istream &is, vector<T> &vec){for(auto &v: vec)is >> v; return is;} template <typename T> ostream &operator<<(ostream &os, const vector<T>& vec){for(int i = 0; i < vec.size(); i++){ os << vec[i]; if(i + 1 != vec.size())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_set<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T>& st){for(auto itr = st.begin(); itr != st.end(); ++itr){ os << *itr; auto titr = itr; if(++titr != st.end())os << " ";} return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &p){os << p.first << " " << p.second; return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} template <typename T1, typename T2> ostream &operator<<(ostream &os, const unordered_map<T1, T2> &mp){for(auto itr = mp.begin(); itr != mp.end(); ++itr){ os << itr->first << ":" << itr->second; auto titr = itr; if(++titr != mp.end())os << " "; } return os;} // types using ll = long long int; using P = pair<int, int>; // constants const int inf = 1e9; const ll linf = 1LL << 50; const double EPS = 1e-10; const ll mod = 129402307LL; const int dx[4] = {-1, 0, 1, 0}; const int dy[4] = {0, -1, 0, 1}; // io struct fast_io{ fast_io(){ios_base::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(20);} } fast_io_; using cd = complex<double>; // f.size() should be the power of 2. void rec_fft(vector<cd> &f, bool inv=false){ int n = f.size(); if(n == 1)return; vector<cd> f0(n / 2), f1(n / 2); for(int i = 0; i < n / 2; i++){ f0[i] = f[i * 2]; f1[i] = f[i * 2 + 1]; } rec_fft(f0, inv); rec_fft(f1, inv); double th = M_PI * 2 / n; if(inv)th = - th; cd u(cos(th), sin(th)), ui(1, 0); for(int i = 0; i < n; i++){ f[i] = f0[i%(n/2)] + ui * f1[i%(n/2)]; ui = ui * u; } } // f.size() should be the power of 2. void fft(vector<cd> &f, bool inv=false){ int n = f.size(), mask = n - 1; vector<cd> tmp(n); for(int i = n >> 1; i >= 1; i >>= 1){ cd zeta = polar(1., 2. * M_PI * i * (inv ? -1.: 1.) / n); cd w = 1; for(int j = 0; j < n; j += i){ for(int k = 0; k < i; k++){ tmp[j + k] = f[((j<<1)&mask) + k] + w * f[(((j<<1)+i)&mask)+k]; } w *= zeta; } swap(f, tmp); } } void dft(vector<cd> &f){ fft(f); } void idft(vector<cd> &f){ fft(f, true); for(size_t i = 0; i < f.size(); i++)f[i] = f[i] / cd(f.size()); } template <typename T> vector<T> convolution(const vector<T> &f, const vector<T> &g){ int n = 1; while(n < 2 * f.size() + 1)n *= 2; vector<cd> F(n, 0), G(n, 0); for(int i = 0; i < f.size(); i++)F[i] = cd(f[i]); for(int i = 0; i < g.size(); i++)G[i] = cd(g[i]); dft(F); dft(G); vector<cd> H(n); for(int i = 0; i < n; i++)H[i] = F[i] * G[i]; idft(H); vector<T> h(n); for(int i = 0; i < n; i++){ h[i] = T(round(H[i].real())); } return h; } vector<ll> convert_base(const vector<ll> &v, int old_b, int new_b){ vector<ll> p(max(new_b, old_b) + 1); p[0] = 1; for(int i = 1; i < p.size(); i++)p[i] = p[i-1] * 10; vector<ll> res; ll curr = 0; int curr_b = 0; for(int i = 0; i < v.size(); i++){ curr += v[i] * p[curr_b]; curr_b += old_b; while(curr_b >= new_b){ res.push_back(curr % p[new_b]); curr /= p[new_b]; curr_b -= new_b; } } res.push_back(curr); while(!res.empty() && res.back() == 0)res.pop_back(); return res; } vector<ll> simple_multiply(const vector<ll> &x, const vector<ll> &y){ vector<ll> res(x.size() + y.size() - 1, 0); for(int i = 0; i < x.size(); i++){ for(int j = 0; j < y.size(); j++){ res[i+j] += x[i] * y[j]; } } while(!res.empty() && res.back() == 0)res.pop_back(); return res; } vector<ll> fft_multiply(const vector<ll> &x, const vector<ll> &y){ int n = max(x.size(), y.size()); vector<ll> a = x, b = y; a.resize(n, 0); b.resize(n, 0); vector<ll> conv = convolution<ll>(a, b); while(!conv.empty() && conv.back() == 0)conv.pop_back(); return conv; } vector<ll> karatsuba_multiply(const vector<ll> &x, const vector<ll> &y){ int n = max(x.size(), y.size()); int m = 0; while((1 << m) < n)m++; n = (1 << m); vector<ll> a = x, b = y; a.resize(n, 0); b.resize(n, 0); if(n <= 32){ return simple_multiply(a, b); } int k = n >> 1; vector<ll> a1(a.begin(), a.begin() + k); vector<ll> a2(a.begin() + k, a.end()); vector<ll> b1(b.begin(), b.begin() + k); vector<ll> b2(b.begin() + k, b.end()); vector<ll> a1b1 = karatsuba_multiply(a1, b1); vector<ll> a2b2 = karatsuba_multiply(a2, b2); for(int i = 0; i < k; i++)a2[i] += a1[i]; for(int i = 0; i < k; i++)b2[i] += b1[i]; vector<ll> z = karatsuba_multiply(a2, b2); for(int i = 0; i < a1b1.size(); i++)z[i] -= a1b1[i]; for(int i = 0; i < a2b2.size(); i++)z[i] -= a2b2[i]; vector<ll> res(2 * n, 0); for(int i = 0; i < a1b1.size(); i++)res[i] += a1b1[i]; for(int i = 0; i < a2b2.size(); i++)res[i + n] += a2b2[i]; for(int i = 0; i < z.size(); i++)res[i + k] += z[i]; while(!res.empty() && res.back() == 0)res.pop_back(); return res; } struct Bigint{ const ll base = 100000000; const ll mbase = 1000; // 1000 for FFT, 10000 otherwise const int b = 8; const int mb = 3; // 3 for FFT, 10000 otherwise int sign = 1; vector<ll> dg; Bigint(){} Bigint(ll x){ if(x < 0){ sign = -1; x *= -1; } while(x){ dg.push_back(x % base); x /= base; } } Bigint(const string &s){ int e = 0; if(s[0] == '-'){ sign = -1; e++; } for(int i = int(s.size()) - 1; i >= e; i-=b){ int B = (i - b + 1 >= e ? b: i + 1 - e); ll x = stoll(s.substr(max(e, i - b + 1), B)); dg.push_back(x); } } Bigint& operator=(const string &s){ *this = Bigint(s); return *this; } Bigint& operator=(const Bigint &x){ sign = x.sign; dg = x.dg; return *this; } Bigint& operator=(ll x){ return (*this = Bigint(x)); } Bigint operator-() const{ Bigint res = *this; res.sign *= -1; return res; } Bigint operator+(const Bigint &x) const{ if(sign == x.sign){ Bigint res; res.sign = sign; res.dg.resize(max(dg.size(), x.dg.size())); ll carry = 0; for(int i = 0; i < max(dg.size(), x.dg.size()); i++){ ll tmp = carry; if(i < dg.size())tmp += dg[i]; if(i < x.dg.size())tmp += x.dg[i]; res.dg[i] = (tmp % base); carry = tmp / base; } while(carry){ res.dg.push_back(carry % base); carry /= base; } return res; }else{ return (*this - (- x)); } } void trim(){ while(!dg.empty() && dg.back() == 0)dg.pop_back(); if(dg.empty())sign = 1; } Bigint abs() const{ Bigint res = *this; res.sign = 1; return res; } Bigint operator-(const Bigint &x) const{ if(sign == x.sign){ if(abs() >= x.abs()){ Bigint res = *this; ll carry = 0; for(int i = 0; i < x.dg.size(); i++){ res.dg[i] -= carry + x.dg[i]; if(res.dg[i] < 0){ res.dg[i] += base; carry = 1; }else{ carry = 0; } } if(carry > 0){ for(int i = x.dg.size(); i < res.dg.size() && carry > 0; i++){ res.dg[i] -= carry; if(res.dg[i] < 0){ res.dg[i] += base; carry = 1; }else{ carry = 0; } } } res.trim(); return res; }else{ return - (x - *this); } }else{ return (*this + (- x)); } } bool operator<(const Bigint &x) const{ if(sign != x.sign)return sign < x.sign; if(dg.size() != x.dg.size())return int(dg.size()) * sign < int(x.dg.size()) * x.sign; for(int i = int(dg.size()) - 1; i >= 0; i--){ if(dg[i] != x.dg[i])return dg[i] * sign < x.dg[i] * x.sign; } return false; } bool operator>(const Bigint &x) const{ return x < *this; } bool operator<=(const Bigint &x) const{ return !(*this > x); } bool operator>=(const Bigint &x) const{ return !(*this < x); } bool operator==(const Bigint &x) const{ return !(*this < x) && !(x < *this); } bool operator!=(const Bigint &x) const{ return (*this < x) || (x < *this); } friend istream& operator>>(istream &is, Bigint &x){ string s; is >> s; x = s; return is; } friend ostream& operator<<(ostream& os, const Bigint &x){ if(x.sign < 0)os << '-'; if(x.dg.empty())os << 0; else{ os << x.dg.back(); for(int i = int(x.dg.size()) - 2; i >= 0; i--){ os << setw(x.b) << setfill('0') << x.dg[i]; } } return os; } Bigint& operator*=(ll x){ if(x < 0){ x *= -1; sign *= -1; } ll carry = 0; for(int i = 0; i < dg.size(); i++){ carry = dg[i] * x + carry; dg[i] = carry % base; carry /= base; } while(carry){ dg.push_back(carry % base); carry /= base; } trim(); return *this; } Bigint operator*(ll x) const{ Bigint res = *this; res *= x; return res; } Bigint operator*(const Bigint &v) const{ vector<ll> x = convert_base(dg, b, mb); vector<ll> y = convert_base(v.dg, b, mb); if(x.empty())x.push_back(0); if(y.empty())y.push_back(0); // simple multiplication // vector<ll> mul = simple_multiply(x, y); // FFT vector<ll> mul = fft_multiply(x, y); // karatsuba // vector<ll> mul = karatsuba_multiply(x, y); Bigint res; res.sign = sign * v.sign; ll carry = 0; for(int i = 0; i < mul.size(); i++){ carry += mul[i]; res.dg.push_back(carry % mbase); carry /= mbase; } while(carry){ res.dg.push_back(carry % mbase); carry /= mbase; } res.dg = convert_base(res.dg, mb, b); res.trim(); return res; } // a = bq + r pair<Bigint, Bigint> divmod(const Bigint &a1, const Bigint &b1) const{ ll norm = base / (b1.dg.back() + 1); Bigint q, r; q.sign = a1.sign * b1.sign; r.sign = a1.sign; Bigint a = a1.abs() * norm; Bigint b = b1.abs() * norm; q.dg.resize(a.dg.size()); for(int i = int(a.dg.size()) - 1; i >= 0; i--){ r = r * base + a.dg[i]; ll s1 = (r.dg.size() <= b.dg.size() ? 0: r.dg[b.dg.size()]); ll s2 = (r.dg.size() <= int(b.dg.size()) - 1 ? 0: r.dg[int(b.dg.size()) - 1]); // temporary solution ll d = (base * s1 + s2) / b.dg.back(); r -= b * d; // feedback while(r < 0)r += b, d--; q.dg[i] = d; } q.trim(); r.trim(); return make_pair(q, r / norm); } Bigint operator/(const Bigint &x) const{ return divmod(*this, x).first; } Bigint operator%(const Bigint &x) const{ return divmod(*this, x).second; } Bigint& operator/=(ll x){ if(x < 0){ x *= -1; sign *= -1; } ll rem = 0; for(int i = int(dg.size()) - 1; i >= 0; i--){ rem = dg[i] + rem * base; dg[i] = rem / x; rem = rem % x; } trim(); return *this; } Bigint operator/(ll x) const{ Bigint res = *this; res /= x; return res; } Bigint operator%(ll x) const{ if(x < 0)x *= -1; ll m = 0; for(int i = int(dg.size()) - 1; i >= 0; i--){ m = (dg[i] + m * base) % x; } return m * sign; } Bigint& operator+=(const Bigint &x){ *this = *this + x; return *this; } Bigint& operator-=(const Bigint &x){ *this = *this - x; return *this; } Bigint& operator*=(const Bigint &x){ *this = *this * x; return *this; } Bigint& operator/=(const Bigint &x){ *this = *this / x; return *this; } bool iszero(){ trim(); if(dg.empty())return false; return true; } ll long_value() const { ll res = 0; for(int i = int(dg.size()) - 1; i >= 0; i--){ res = res * base + dg[i]; } return res * sign; } }; template <typename T> T power(T a, T n, T mod) { T res = 1; T tmp = n; T curr = a; while(tmp){ if(tmp % 2 == 1){ res = (T)(res * curr % mod); } curr = (T)(curr * curr % mod); tmp >>= 1; } return res; } int main(int argc, char const* argv[]) { Bigint n, m; cin >> n >> m; Bigint MOD = Bigint(mod); n = n % MOD; m = m % (MOD - 1); ll N = n.long_value(); ll M = m.long_value(); if(N == 0){ cout << 0 << endl; return 0; } cout << power<ll>(N, M, mod) << endl; return 0; }