結果

問題 No.907 Continuous Kadomatu
ユーザー LayCurse
提出日時 2019-10-11 23:03:03
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 649 ms / 2,000 ms
コード長 10,374 bytes
コンパイル時間 2,755 ms
コンパイル使用メモリ 223,904 KB
最終ジャッジ日時 2025-01-07 21:48:18
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 5
other AC * 25
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD 1000000007
void *wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct mint{
static unsigned md;
static unsigned W;
static unsigned R;
static unsigned Rinv;
static unsigned mdninv;
static unsigned RR;
unsigned val;
mint(){
}
mint(int a){
val = mulR(a);
}
mint(unsigned a){
val = mulR(a);
}
mint(long long a){
val = mulR(a);
}
mint(unsigned long long a){
val = mulR(a);
}
int get_inv(long long a, int md){
long long t=a;
long long s=md;
long long u=1;
long long v=0;
long long e;
while(s){
e=t/s;
t-=e*s;
u-=e*v;
swap(t,s);
swap(u,v);
}
if(u<0){
u+=md;
}
return u;
}
void setmod(unsigned m){
int i;
unsigned t;
W = 32;
md = m;
R = (1ULL << W) % md;
RR = (unsigned long long)R*R % md;
switch(m){
case 104857601:
Rinv = 2560000;
mdninv = 104857599;
break;
case 998244353:
Rinv = 232013824;
mdninv = 998244351;
break;
case 1000000007:
Rinv = 518424770;
mdninv = 2226617417U;
break;
case 1000000009:
Rinv = 171601999;
mdninv = 737024967;
break;
case 1004535809:
Rinv = 234947584;
mdninv = 1004535807;
break;
case 1007681537:
Rinv = 236421376;
mdninv = 1007681535;
break;
case 1012924417:
Rinv = 238887936;
mdninv = 1012924415;
break;
case 1045430273:
Rinv = 254466304;
mdninv = 1045430271;
break;
case 1051721729:
Rinv = 257538304;
mdninv = 1051721727;
break;
default:
Rinv = get_inv(R, md);
mdninv = 0;
t = 0;
for(i=(0);i<((int)W);i++){
if(t%2==0){
t+=md;
mdninv |= (1U<<i);
}
t /= 2;
}
}
}
unsigned mulR(unsigned a){
return (unsigned long long)a*R%md;
}
unsigned mulR(int a){
if(a < 0){
a = a%((int)md)+(int)md;
}
return mulR((unsigned)a);
}
unsigned mulR(unsigned long long a){
return mulR((unsigned)(a%md));
}
unsigned mulR(long long a){
a %= md;
if(a < 0){
a += md;
}
return mulR((unsigned)a);
}
unsigned reduce(unsigned T){
unsigned m = T * mdninv;
unsigned t = (unsigned)((T + (unsigned long long)m*md) >> W);
if(t >= md){
t -= md;
}
return t;
}
unsigned reduce(unsigned long long T){
unsigned m = (unsigned)T * mdninv;
unsigned t = (unsigned)((T + (unsigned long long)m*md) >> W);
if(t >= md){
t -= md;
}
return t;
}
unsigned get(){
return reduce(val);
}
mint &operator+=(mint a){
val += a.val;
if(val >= md){
val -= md;
}
return *this;
}
mint &operator-=(mint a){
if(val < a.val){
val = val + md - a.val;
}
else{
val -= a.val;
}
return *this;
}
mint &operator*=(mint a){
val = reduce((unsigned long long)val*a.val);
return *this;
}
mint &operator/=(mint a){
return *this *= a.inverse();
}
mint operator+(mint a){
return mint(*this)+=a;
}
mint operator-(mint a){
return mint(*this)-=a;
}
mint operator*(mint a){
return mint(*this)*=a;
}
mint operator/(mint a){
return mint(*this)/=a;
}
mint operator+(int a){
return mint(*this)+=mint(a);
}
mint operator-(int a){
return mint(*this)-=mint(a);
}
mint operator*(int a){
return mint(*this)*=mint(a);
}
mint operator/(int a){
return mint(*this)/=mint(a);
}
mint operator+(long long a){
return mint(*this)+=mint(a);
}
mint operator-(long long a){
return mint(*this)-=mint(a);
}
mint operator*(long long a){
return mint(*this)*=mint(a);
}
mint operator/(long long a){
return mint(*this)/=mint(a);
}
mint operator-(void){
mint res;
if(val){
res.val=md-val;
}
else{
res.val=0;
}
return res;
}
operator bool(void){
return val!=0;
}
operator int(void){
return get();
}
operator long long(void){
return get();
}
mint inverse(){
int a = val;
int b = md;
int u = 1;
int v = 0;
int t;
mint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += md;
}
res.val = (unsigned long long)u*RR % md;
return res;
}
mint pw(unsigned long long b){
mint a(*this);
mint res;
res.val = R;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
bool operator==(int a){
return mulR(a)==val;
}
bool operator!=(int a){
return mulR(a)!=val;
}
}
;
unsigned mint::md;
unsigned mint::W;
unsigned mint::R;
unsigned mint::Rinv;
unsigned mint::mdninv;
unsigned mint::RR;
mint operator+(int a, mint b){
return mint(a)+=b;
}
mint operator-(int a, mint b){
return mint(a)-=b;
}
mint operator*(int a, mint b){
return mint(a)*=b;
}
mint operator/(int a, mint b){
return mint(a)/=b;
}
mint operator+(long long a, mint b){
return mint(a)+=b;
}
mint operator-(long long a, mint b){
return mint(a)-=b;
}
mint operator*(long long a, mint b){
return mint(a)*=b;
}
mint operator/(long long a, mint b){
return mint(a)/=b;
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void wt_L(char a){
putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
putchar_unlocked('-');
}
while(s--){
putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(mint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T> int coordcomp_L(int n1, T arr1[], int n2, T arr2[], int res1[] = NULL, int res2[] = NULL, void *mem = wmem){
int i;
int k = 0;
pair<T,int> *r;
walloc1d(&r, n1+n2, &mem);
for(i=(0);i<(n1);i++){
r[i].first = arr1[i];
r[i].second = i;
}
for(i=(0);i<(n2);i++){
r[n1+i].first = arr2[i];
r[n1+i].second = n1+i;
}
sort(r, r+n1+n2);
for(i=(0);i<(n1+n2);i++){
if(i && r[i].first != r[i-1].first){
k++;
}
if(r[i].second < n1){
if(res1!=NULL){
res1[r[i].second] = k;
}
else{
arr1[r[i].second] = k;
}
}
else{
if(res2!=NULL){
res2[r[i].second-n1] = k;
}
else{
arr2[r[i].second-n1] = k;
}
}
}
return k+1;
}
int N;
int A[200];
int B[200];
int x[200];
int y[200];
int v[400];
int m;
mint dp[200][401];
mint dp2[200][401];
mint coef[201];
mint dd[201];
mint nn[201];
int main(){
int i, k, n;
wmem = memarr;
{
mint x;
x.setmod(MD);
}
int s;
int e;
mint res;
mint tmp;
mint mul;
rd(N);
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
rd(A[Lj4PdHRW]);
rd(B[Lj4PdHRW]);
}
}
for(n=(1);n<(N+1);n++){
int i, k;
for(i=(0);i<(n);i++){
dd[i] = 0;
}
dd[n] = 1;
for(k=(0);k<(n);k++){
s = n - k;
nn[0] = dd[s];
for(i=(1);i<(s);i++){
nn[i] = nn[i-1] + dd[s-i];
}
for(i=(0);i<(s);i++){
dd[i] = nn[i];
}
}
coef[n] = dd[0];
for(i=(1);i<(n+1);i++){
coef[n] /= i;
}
}
m =coordcomp_L(N, A, N, B, x, y)- 1;
for(i=(0);i<(N);i++){
v[x[i]] = A[i];
v[y[i]] = B[i];
}
for(k=(0);k<(m);k++){
if(x[0] <= k && k < y[0]){
dp[0][k] = dp2[0][k] = mint(v[k+1] - v[k]) / mint(B[0] - A[0]);
}
}
for(i=(1);i<(N);i++){
for(k=(0);k<(m);k++){
if(x[i] <= k && k < y[i]){
int j, z;
tmp = mint(v[k+1] - v[k]) / mint(B[i] - A[i]);
if(i%2==0){
s = k+1;
e = m;
}
else{
s = 0;
e = k;
}
for(j=(s);j<(e);j++){
dp[i][k] += tmp * dp[i-1][j];
}
dp2[i][k] = dp[i][k];
mul = 1;
for(z=(i)-1;z>=(0);z--){
if(!(x[z] <= k && k < y[z])){
break;
}
dp[i][k] += tmp * dp2[z][k] * coef[i-z+1] * mul;
mul *= mint(v[k+1] - v[k]) / mint(B[z] - A[z]);
}
}
}
}
res = 0;
for(k=(0);k<(m);k++){
res += dp[N-1][k];
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20191006-1
// --- original code ---
// int N, A[200], B[200];
// int x[200], y[200], v[400], m;
// mint dp[200][401], dp2[200][401];
// mint coef[201], dd[201], nn[201];
// {
// int s, e;
// mint res, tmp, mul;
// rd(N,(A,B)(N));
//
// rep(n,1,N+1){
// rep(i,n) dd[i] = 0;
// dd[n] = 1;
// rep(k,n){
// s = n - k;
// nn[0] = dd[s];
// rep(i,1,s) nn[i] = nn[i-1] + dd[s-i];
// rep(i,s) dd[i] = nn[i];
// }
// coef[n] = dd[0];
// rep(i,1,n+1) coef[n] /= i;
// }
//
//
// m = coordcomp(N, A, N, B, x, y) - 1;
// rep(i,N) v[x[i]] = A[i], v[y[i]] = B[i];
//
// rep(k,m) if(x[0] <= k < y[0]) dp[0][k] = dp2[0][k] = mint(v[k+1] - v[k]) / mint(B[0] - A[0]);
//
// // rep(i,N) wt("xy",x[i],y[i]);
//
// rep(i,1,N){
// // wt(i,":",dp[i-1](m));
// // wt(i,":",dp2[i-1](m));
// rep(k,m) if(x[i] <= k < y[i]){
// tmp = mint(v[k+1] - v[k]) / mint(B[i] - A[i]);
// if(i%2==0) s = k+1, e = m;
// else s = 0, e = k;
// rep(j,s,e) dp[i][k] += tmp * dp[i-1][j];
// dp2[i][k] = dp[i][k];
// mul = 1;
// rrep(z,i){
// if(!(x[z] <= k < y[z])) break;
// dp[i][k] += tmp * dp2[z][k] * coef[i-z+1] * mul;
// mul *= mint(v[k+1] - v[k]) / mint(B[z] - A[z]);
// }
// }
// }
// // wt(i,":",dp[i-1](m));
// // wt(i,":",dp2[i-1](m));
//
// res = 0;
// rep(k,m) res += dp[N-1][k];
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0