結果
| 問題 |
No.120 傾向と対策:門松列(その1)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-10-12 16:08:25 |
| 言語 | Nim (2.2.0) |
| 結果 |
AC
|
| 実行時間 | 18 ms / 5,000 ms |
| コード長 | 3,168 bytes |
| コンパイル時間 | 2,522 ms |
| コンパイル使用メモリ | 61,764 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-28 02:08:53 |
| 合計ジャッジ時間 | 3,000 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 |
コンパイルメッセージ
/home/judge/data/code/Main.nim(2, 8) Warning: imported and not used: 'sequtils' [UnusedImport]
ソースコード
{.checks:off,optimization:speed.}
import sequtils,algorithm
template times*(n:int,body) = (for _ in 0..<n: body)
template `max=`*(x,y) = x = max(x,y)
template `min=`*(x,y) = x = min(x,y)
proc getchar_unlocked():char {. importc:"getchar_unlocked",header: "<stdio.h>" .}
proc scan(): int =
while true:
let k = getchar_unlocked()
if k < '0': break
result = 10 * result + k.ord - '0'.ord
type HeapQueue*[T] = object
## A heap queue, commonly known as a priority queue.
data: seq[T]
proc initHeapQueue*[T](): HeapQueue[T] =
## Create a new empty heap.
discard
proc len*[T](heap: HeapQueue[T]): int {.inline.} =
## Return the number of elements of `heap`.
heap.data.len
proc `[]`*[T](heap: HeapQueue[T], i: Natural): T {.inline.} =
## Access the i-th element of `heap`.
heap.data[i]
proc heapCmp[T](x, y: T): bool {.inline.} =
return (x < y)
proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) =
## 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
## is the index of a leaf with a possibly out-of-order value. Restore the
## heap invariant.
var pos = p
var newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
let parentpos = (pos - 1) shr 1
let parent = heap[parentpos]
if heapCmp(newitem, parent):
heap.data[pos] = parent
pos = parentpos
else:
break
heap.data[pos] = newitem
proc siftup[T](heap: var HeapQueue[T], p: int) =
let endpos = len(heap)
var pos = p
let startpos = pos
let newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
var childpos = 2*pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
let rightpos = childpos + 1
if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
childpos = rightpos
# Move the smaller child up.
heap.data[pos] = heap[childpos]
pos = childpos
childpos = 2*pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
# to its final resting place (by sifting its parents down).
heap.data[pos] = newitem
siftdown(heap, startpos, pos)
proc push*[T](heap: var HeapQueue[T], item: T) =
## Push `item` onto heap, maintaining the heap invariant.
heap.data.add(item)
siftdown(heap, 0, len(heap)-1)
proc pop*[T](heap: var HeapQueue[T]): T =
## Pop and return the smallest item from `heap`,
## maintaining the heap invariant.
let lastelt = heap.data.pop()
if heap.len > 0:
result = heap[0]
heap.data[0] = lastelt
siftup(heap, 0)
else:
result = lastelt
proc solve() : int =
let n = scan()
var L = newSeq[int](n)
for i in 0..<n: L[i] = scan()
L.sort(cmp)
var R = @[1]
for i in 1..<n:
if L[i-1] == L[i] : R[^1] += 1
else: R .add 1
if R.len < 3: return 0
var q = initHeapQueue[int]()
for r in R: q.push(-r)
while true:
let a = -q.pop() - 1
let b = -q.pop() - 1
let c = -q.pop() - 1
if a < 0 or b < 0 or c < 0 : return
result += 1
q.push(-b)
q.push(-c)
q.push(-a)
scan().times: echo solve()