結果
| 問題 | No.318 学学学学学 |
| コンテスト | |
| ユーザー |
ziita
|
| 提出日時 | 2019-10-14 16:47:52 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 190 ms / 2,000 ms |
| コード長 | 7,081 bytes |
| コンパイル時間 | 17,299 ms |
| コンパイル使用メモリ | 379,872 KB |
| 実行使用メモリ | 16,748 KB |
| 最終ジャッジ日時 | 2024-12-24 04:24:09 |
| 合計ジャッジ時間 | 18,749 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
コンパイルメッセージ
warning: unused variable: `l`
--> src/main.rs:101:19
|
101 | (Some(l), Some(r)) => Some(r),
| ^ help: if this is intentional, prefix it with an underscore: `_l`
|
= note: `#[warn(unused_variables)]` on by default
warning: unused variable: `l`
--> src/main.rs:102:19
|
102 | (Some(l), None) => None,
| ^ help: if this is intentional, prefix it with an underscore: `_l`
warning: unused variable: `l`
--> src/main.rs:110:19
|
110 | (Some(l), Some(r)) => Some(r),
| ^ help: if this is intentional, prefix it with an underscore: `_l`
warning: unused variable: `l`
--> src/main.rs:111:19
|
111 | (Some(l), None) => None,
| ^ help: if this is intentional, prefix it with an underscore: `_l`
warning: variable does not need to be mutable
--> src/main.rs:140:13
|
140 | let mut lazy_data = vec![None; size_p2 * 2];
| ----^^^^^^^^^
| |
| help: remove this `mut`
|
= note: `#[warn(unused_mut)]` on by default
ソースコード
#![allow(unused_imports)]
#![allow(dead_code)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
use std::cmp::*;
use std::collections::*;
use std::ops::*;
use std::io::{Write, BufWriter};
static MOD: usize = 998244353;
// static MOD: usize = 1000000007;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes
.by_ref()
.map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr, ) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => {
( $(read_value!($next, $t)),* )
};
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => {
read_value!($next, usize) - 1
};
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
(0..len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
}};
($next:expr, $t:ty) => {
$next().parse::<$t>().expect("Parse error")
};
}
use std::cmp;
use std::marker::PhantomData;
pub trait Monoid<T> {
fn id() -> Option<T> {
None
}
// TxT->T
fn tt_op(l: &Option<T>, r: &Option<T>) -> Option<T>;
// SxS->S
fn ss_op(l: &Option<T>, r: &Option<T>) -> Option<T>;
// TxS->T
fn ts_op(l: &Option<T>, r: &Option<T>) -> Option<T>;
}
pub struct SegOp<T: Ord> {
phantom: PhantomData<T>,
}
impl<T: Ord + Clone + Add<Output=T>> Monoid<T> for SegOp<T> {
#[inline]
// add
fn tt_op(l: &Option<T>, r: &Option<T>) -> Option<T> {
match (l.clone(), r.clone()) {
(Some(l), Some(r)) => Some(l+r),
(Some(l), None) => Some(l),
(None, Some(r)) => Some(r),
(None, None) => None,
}
}
// overwrite
fn ss_op(l: &Option<T>, r: &Option<T>) -> Option<T> {
match (l.clone(), r.clone()) {
(Some(l), Some(r)) => Some(r),
(Some(l), None) => None,
(None, Some(r)) => Some(r),
(None, None) => None,
}
}
// overwrite
fn ts_op(l: &Option<T>, r: &Option<T>) -> Option<T> {
match (l.clone(), r.clone()) {
(Some(l), Some(r)) => Some(r),
(Some(l), None) => None,
(None, Some(r)) => Some(r),
(None, None) => None,
}
}
}
pub struct SegmentTree<M: Monoid<T>, T: Clone> {
phantom: PhantomData<M>,
data: Vec<Option<T>>,
lazy_data: Vec<Option<T>>,
size: usize,
size_p2: usize,
}
impl<M: Monoid<T>, T: Clone> SegmentTree<M, T> {
pub fn from_vec(v: Vec<T>) -> SegmentTree<M, T> {
let size = v.len();
let mut size_p2 = 1;
while size_p2 < v.len() {
size_p2 *= 2;
}
let mut data = vec![None; size_p2 * 2];
for (i, x) in v.into_iter().enumerate() {
data[size_p2 + i] = Some(x);
}
for i in (0..size_p2).rev() {
data[i] = M::tt_op(&data[i * 2 + 0], &data[i * 2 + 1]);
}
let mut lazy_data = vec![None; size_p2 * 2];
SegmentTree {
phantom: PhantomData,
data: data,
lazy_data: lazy_data,
size: size,
size_p2: size_p2,
}
}
pub fn size(&self) -> usize {
self.size
}
pub fn eval(&mut self, l: usize, r: usize, k: usize){
if self.lazy_data[k].is_some() {
self.data[k] = M::ts_op(&self.data[k], &self.lazy_data[k]);
if r-l>1 {
self.lazy_data[2*k+0] = M::ss_op(&self.data[2*k+0], &self.lazy_data[k]);
self.lazy_data[2*k+1] = M::ss_op(&self.data[2*k+1], &self.lazy_data[k]);
}
self.lazy_data[k] = None;
}
}
pub fn lazy_update(&mut self, a: usize, b: usize, l: usize, r: usize, k: usize, value: T) {
// assert!(l <= r && r <= self.size);
self.eval(l,r,k);
if b<=l || r<=a {return;}
if a<=l && r<=b {
self.lazy_data[k] = M::ss_op(&self.lazy_data[k], &Some(value));
self.eval(l,r,k);
}
else{
self.lazy_update(a,b,l,(l+r)/2,2*k+0,value.clone());
self.lazy_update(a,b,(l+r)/2,r,2*k+1,value.clone());
self.data[k] = M::tt_op(&self.data[2*k+0], &self.data[2*k+1]);
}
}
pub fn update(&mut self, a: usize, b:usize, value: T){
self.lazy_update(a,b,0,self.size_p2,1,value);
}
pub fn lazy_query(&mut self, a: usize, b: usize, l: usize, r: usize, k: usize) -> Option<T> {
self.eval(l,r,k);
if a<=l && r<=b {return self.data[k].clone();}
if b<=l || r<=a {return None;}
let res1 = self.lazy_query(a, b, l, (l+r)/2, 2*k+0);
let res2 = self.lazy_query(a, b, (l+r)/2, r, 2*k+1);
M::tt_op(&res1, &res2)
}
pub fn query(&mut self, l: usize, r: usize) -> Option<T> {
self.lazy_query(l,r,0,self.size_p2,1)
}
}
#[derive(Copy, Clone, Eq, PartialEq)]
struct Tuple {
x: i64,
l: usize,
r: usize,
}
impl Ord for Tuple{
fn cmp(&self, other: &Tuple) -> Ordering {
other.x.cmp(&self.x)
}
}
impl PartialOrd for Tuple {
fn partial_cmp(&self, other: &Tuple) -> Option<Ordering> {
Some(self.cmp(other))
}
}
fn solve() {
input! {
n: usize,
a: [i64; n],
}
let mut book_l: HashMap<i64,usize> = HashMap::new();
let mut book_r: HashMap<i64,usize> = HashMap::new();
for i in 0..n {
let num = a[i];
if book_l.contains_key(&num) {
book_r.insert(num, i);
}
else{
book_l.insert(num, i);
book_r.insert(num, i);
}
}
let mut heap: BinaryHeap<Tuple> = BinaryHeap::new();
for i in book_l.keys() {
let l = book_l.get(&i).unwrap();
let r = book_r.get(&i).unwrap();
heap.push(Tuple{x:*i,l:*l,r:*r});
}
pub type Seg<T> = SegmentTree<SegOp<T>, T>;
let mut seg = Seg::from_vec(a.clone());
while let Some(Tuple{x,l,r}) = heap.pop() {
seg.update(l,r+1,x);
}
for i in 0..n {
print!("{} ", seg.query(i,i+1).unwrap());
}
println!();
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
ziita