結果
| 問題 |
No.776 A Simple RMQ Problem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-10-17 12:12:27 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 405 ms / 3,000 ms |
| コード長 | 4,291 bytes |
| コンパイル時間 | 2,053 ms |
| コンパイル使用メモリ | 203,372 KB |
| 最終ジャッジ日時 | 2025-01-07 22:05:05 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 26 |
ソースコード
#include <bits/stdc++.h>
#define LLI long long int
#define FOR(v, a, b) for(LLI v = (a); v < (b); ++v)
#define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(LLI v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define popcount __builtin_popcount
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(...) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
struct Init{
Init(){
cin.tie(0);
ios::sync_with_stdio(false);
}
}init;
template <typename Monoid> class SegmentTree{
private:
int size;
vector<Monoid> vec;
inline Monoid aux(int x, int y, int i, int l, int r){
if(r<=x || y<=l) return Monoid::identity();
else if(x<=l && r<=y) return vec[i];
else return Monoid::op(aux(x,y,i*2+1,l,(l+r)/2), aux(x,y,i*2+2,(l+r)/2,r));
};
public:
SegmentTree(int n){
size = 1;
while(size < n) size *= 2;
size = size*2-1;
vec = vector<Monoid>(size, Monoid::identity());
}
inline void update(int i, const Monoid &x){
int j = i+(size+1)/2-1;
vec[j] = x;
--j;
while(j>=0){
vec[j/2] = Monoid::op(vec[(j/2)*2+1], vec[(j/2)*2+2]);
(j /= 2) -= 1;
}
}
inline Monoid at(int i){
return vec[(size+1)/2 + i - 1];
}
inline Monoid get(int x, int y){ // [x,y)
return aux(x,y,0,0,(size+1)/2);
}
};
template <typename T, T NEGINF>
struct MaxPartialSumMonoid{
T sum, left_max, right_max, partial_max;
using M = MaxPartialSumMonoid;
static M op(const M &a, const M &b){
return MaxPartialSumMonoid({
a.sum + b.sum,
max({a.left_max, a.sum+b.left_max, a.sum+b.sum}),
max({b.right_max, b.sum+a.right_max, a.sum+b.sum}),
max({a.partial_max, b.partial_max, a.right_max+b.left_max})
});
}
static constexpr M identity(){
return MaxPartialSumMonoid({0, NEGINF, NEGINF, NEGINF});
}
static constexpr M make(const T &a){
return MaxPartialSumMonoid({a, a, a, a});
}
friend ostream& operator<<(ostream &os, const M &val){
os << val.sum << "," << val.left_max << "," << val.right_max << "," << val.partial_max;
return os;
}
};
using M = MaxPartialSumMonoid<LLI,(-(1LL<<50))>;
int main(){
int N,Q;
while(cin >> N >> Q){
SegmentTree<M> seg(N);
vector<LLI> a(N); cin >> a;
REP(i,N){
seg.update(i, M::make(a[i]));
}
REP(i,Q){
string com; cin >> com;
if(com == "set"){
int i, x; cin >> i >> x;
--i;
seg.update(i, M::make(x));
a[i] = x;
}else{
int l1, l2, r1, r2; cin >> l1 >> l2 >> r1 >> r2;
--l1, --l2, --r1, --r2;
r1 = max(l1,r1);
l2 = min(l2,r2);
LLI ans = LLONG_MIN;
if(l2 <= r1){
ans = seg.get(l1,l2+1).right_max + seg.get(l2,r1+1).sum + seg.get(r1,r2+1).left_max - a[r1] - a[l2];
}else{
chmax(ans, seg.get(l1,r1+1).right_max + seg.get(r1,r2+1).left_max - a[r1]);
chmax(ans, seg.get(l1,l2+1).right_max + seg.get(l2,r2+1).left_max - a[l2]);
chmax(ans, seg.get(r1,l2+1).partial_max);
}
cout << ans << endl;
}
}
cerr << endl;
}
return 0;
}