結果
問題 | No.534 フィボナッチフィボナッチ数 |
ユーザー | Nishionyama |
提出日時 | 2019-10-18 17:51:22 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,407 bytes |
コンパイル時間 | 1,842 ms |
コンパイル使用メモリ | 175,884 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-25 14:40:17 |
合計ジャッジ時間 | 3,162 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 1 ms
5,376 KB |
testcase_25 | WA | - |
testcase_26 | AC | 1 ms
5,376 KB |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
ソースコード
#include<bits/stdc++.h> using namespace std; typedef long long int ll; // template {{{ 0 // using {{{ 1 using ll = long long int; using pii = pair<int,int>; using pll = pair<ll,ll>; using vi = vector<int>; using vl = vector<ll>; using vii = vector<pii>; using vll = vector<pll>; // }}} 1 // definition {{{ 1 // scaning {{{ 2 #define Scd(x) scanf("%d", &x) #define Scd2(x,y) scanf("%d%d", &x, &y) #define Scd3(x,y,z) scanf("%d%d%d", &x, &y, &z) #define Scll(x) scanf("%lld", &x) #define Scll2(x,y) scanf("%lld%lld", &x, &y) #define Scll3(x,y,z) scanf("%lld%lld%lld", &x, &y, &z) #define Scc(c) scanf("%c", &c); #define Scs(s) scanf("%s", s); #define Scstr(s) scanf("%s", &s); // }}} 2 // constants {{{ 2 #define EPS (1e-7) #define INF (2e9) #define PI (acos(-1)) // }}} 2 // systems {{{ 2 #define Repe(x,y,z) for(ll x = z; x < y; x++) #define Rep(x,y) Repe(x,y,0) #define RRepe(x,y,z) for(ll x = y-z-1; x >= 0; x--) #define RRep(x,y) RRepe(x,y,0) // }}} 2 // output {{{ 2 #define YesNo(a) (a)?printf("Yes\n"):printf("No\n") #define YESNO(a) (a)?printf("YES\n"):printf("NO\n") // }}} 2 // }}} 1 // input {{{ 1 // }}} 1 // }}} 0 long long int mod = 1000000007; // PowMod( base, index, modulo) return base ** index % modulo {{{ // PowMod = base ** index % mod ( natural numbers ) inline long long int PowMod( long long int base, long long int index, long long int modulo = mod ){ if( index == 0 ) return 1; // O( log(index) ) if( index % 2 ){ return base * PowMod(base, index - 1, modulo) % modulo; }else{ long long int Phalf = index / 2; long long int half = PowMod(base, Phalf, modulo); return half * half % modulo; } } // }}} // CombMod( n, r, modulo ) return nCr % modulo {{{ // CombMod(ination) = nCr % mod ( natural number ) inline long long int CombMod( long long int n, long long int r, long long int modulo = mod){ if( n < r ) return CombMod(r,n,modulo); long long int Upper = 1; long long int Lower = 1; for(long long int i = 0; i < r; i++){ Upper = Upper * (n-i) % modulo; Lower = Lower * (i+1) % modulo; } // Return (Upper / Lower) long long int ret = Upper * PowMod(Lower,modulo-2,modulo) % modulo; return ret; } // }}} // FactMod( n, modulo ) return n! % modulo {{{ // Fact(orial) = n! % mod ( natural number ) inline long long int Fact( long long int n, long long int modulo = mod){ long long int Upper = 1; for(long long int i = 0; i < n; i++){ Upper = Upper * (n-i) % modulo; } return Upper; } // }}} // modint {{{ struct modint{ long long int a; inline modint( long long int x = 0 ) noexcept : a(x % mod) {} inline long long int &value() noexcept { return a; } inline const long long int &value() const noexcept { return a; } inline modint operator+(const modint rhs) const noexcept{ return modint(*this) += rhs; } inline modint operator+(const int rhs) const noexcept{ return modint(*this) += rhs; } inline modint operator+(const long long int rhs) const noexcept{ return modint(*this) += rhs; } inline modint operator-(const modint rhs) const noexcept{ return modint(*this) -= rhs; } inline modint operator-(const int rhs) const noexcept{ return modint(*this) -= rhs; } inline modint operator-(const long long int rhs) const noexcept{ return modint(*this) -= rhs; } inline modint operator*(const modint rhs) const noexcept{ return modint(*this) *= rhs; } inline modint operator*(const int rhs) const noexcept{ return modint(*this) *= rhs; } inline modint operator*(const long long int rhs) const noexcept{ return modint(*this) *= rhs; } inline modint operator/(const modint rhs) const noexcept{ return modint(*this) /= rhs; } inline modint operator/(const int rhs) const noexcept{ return modint(*this) /= rhs; } inline modint operator/(const long long int rhs) const noexcept{ return modint(*this) /= rhs; } inline modint operator+=(const modint rhs) noexcept{ a += rhs.a; if( a >= mod ) a -= mod; return*this; } inline modint operator-=(const modint rhs) noexcept{ a -= rhs.a; if( a < 0 ) a += mod; return *this; } inline modint operator*=(const modint rhs) noexcept{ a = a * rhs.a % mod ; return *this; } inline modint operator/=(const modint rhs) noexcept{ a = a * PowMod(rhs.a,mod-2) % mod; return *this; } }; // }}} // Matrix Definition{{{ template< class T > struct Matrix{ vector< vector<T> > A; Matrix(){}; Matrix( int n, int m ) { A.assign(n,vector<T>(m,0)); }; Matrix( int n ) { A.assign(n,vector<T>(n,0)); }; int height() const { return (A.size()); } int width() const { return (A[0].size()); } inline vector<T> &operator[]( int k ) { return (A.at(k)); } inline const vector<T> &operator[]( int k ) const { return (A.at(k)); } // 単位行列 static Matrix E( int n ){ Matrix mat(n); for( int i = 0; i < n; i++ ) mat[i][i] = 1; return mat; } Matrix &operator+=( const Matrix &B ){ int n = height(), m = width(); assert( n == B.height() && m == B.width() ); for( int i = 0; i < n; i++ ) for( int j = 0; j < m; j++ ) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=( const Matrix &B ){ int n = height(), m = width(); assert( n == B.height() && m == B.width() ); for( int i = 0; i < n; i++ ) for( int j = 0; j < m; j++ ) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=( const Matrix &B ){ int n = height(), m = B.width(), p = width(); assert( p == B.height() ); vector< vector<T> > C( n, vector<T>(m, 0) ); for( int i = 0; i < n; i++ ) for( int j = 0; j < m; j++ ) for( int k = 0; k < p; k++ ) C[i][j] += (*this)[i][k] * B[k][j]; A.swap(C); return (*this); } Matrix power( ll k ){ Matrix B = Matrix::E(height()); while( k > 0 ){ if( k&1 ) B *= *this; *this *= *this; k >>= 1; } A.swap(B.A); return *this; } Matrix operator+(const Matrix &B ) const { return (Matrix(*this) += B ); } Matrix operator-(const Matrix &B ) const { return (Matrix(*this) -= B ); } Matrix operator*(const Matrix &B ) const { return (Matrix(*this) *= B ); } void Print(){ int n = height(), m = width(); for( int i = 0; i < n; i++ ){ printf ("["); for( int j = 0; j < m; j++ ){ printf ("%lld%s", (*this)[i][j], j == m-1 ? "]\n" : "," ); } } } }; // }}} int main() { ll mod1 = 1000000007; ll mod2 = 2000000016ll; ll N; Scll(N); Matrix<modint> fi(2,2); Matrix<modint> c(1,2); c[0][0] = 1; c[0][1] = 0; fi[0][0] = 1; fi[0][1] = 1; fi[1][0] = 1; fi[1][1] = 0; mod = mod2; fi.power(N); c *= fi; modint fibn = c[0][1]; // printf ("%lld\n", fibn ); mod = mod1; fibn *= 1; c[0][0] = 1; c[0][1] = 0; fi[0][0] = 1; fi[0][1] = 1; fi[1][0] = 1; fi[1][1] = 0; fi.power(fibn.a); c *= fi; modint ans = c[0][1]; printf ("%lld\n", ans ); return 0; }