結果
| 問題 |
No.829 成長関数インフレ中
|
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2019-10-22 17:30:40 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 1,876 ms / 2,000 ms |
| コード長 | 9,327 bytes |
| コンパイル時間 | 14,556 ms |
| コンパイル使用メモリ | 318,156 KB |
| 最終ジャッジ日時 | 2025-01-08 00:50:14 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 22 |
ソースコード
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
using Int = long long;
template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}
template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}
template<typename T,T MOD = 1000000007>
struct Mint{
static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;};
Mint operator-(Mint a) const{return Mint(v)-=a;};
Mint operator*(Mint a) const{return Mint(v)*=a;};
Mint operator/(Mint a) const{return Mint(v)/=a;};
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
};
template<typename T,T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T,T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
constexpr int bmds(int x){
const int v[] = {1012924417, 924844033, 998244353,
897581057, 645922817};
return v[x];
}
constexpr int brts(int x){
const int v[] = {5, 5, 3, 3, 3};
return v[x];
}
template<int X>
struct NTT{
static constexpr int md = bmds(X);
static constexpr int rt = brts(X);
using M = Mint<int, md>;
vector< vector<M> > rts,rrts;
void ensure_base(int n){
if((int)rts.size()>=n) return;
rts.resize(n);rrts.resize(n);
for(int i=1;i<n;i<<=1){
if(!rts[i].empty()) continue;
M w=M(rt).pow((md-1)/(i<<1));
M rw=w.inv();
rts[i].resize(i);rrts[i].resize(i);
rts[i][0]=M(1);rrts[i][0]=M(1);
for(int k=1;k<i;k++){
rts[i][k]=rts[i][k-1]*w;
rrts[i][k]=rrts[i][k-1]*rw;
}
}
}
void ntt(vector<M> &as,bool f,int n=-1){
if(n==-1) n=as.size();
assert((n&(n-1))==0);
ensure_base(n);
for(int i=0,j=1;j+1<n;j++){
for(int k=n>>1;k>(i^=k);k>>=1);
if(i>j) swap(as[i],as[j]);
}
for(int i=1;i<n;i<<=1){
for(int j=0;j<n;j+=i*2){
for(int k=0;k<i;k++){
M z=as[i+j+k]*(f?rrts[i][k]:rts[i][k]);
as[i+j+k]=as[j+k]-z;
as[j+k]+=z;
}
}
}
if(f){
M tmp=M(n).inv();
for(int i=0;i<n;i++) as[i]*=tmp;
}
}
vector<M> multiply(vector<M> as,vector<M> bs){
int need=as.size()+bs.size()-1;
int sz=1;
while(sz<need) sz<<=1;
as.resize(sz,M(0));
bs.resize(sz,M(0));
ntt(as,0);ntt(bs,0);
for(int i=0;i<sz;i++) as[i]*=bs[i];
ntt(as,1);
as.resize(need);
return as;
}
vector<int> multiply(vector<int> as,vector<int> bs){
vector<M> am(as.size()),bm(bs.size());
for(int i=0;i<(int)am.size();i++) am[i]=M((long long)as[i]);
for(int i=0;i<(int)bm.size();i++) bm[i]=M((long long)bs[i]);
vector<M> cm=multiply(am,bm);
vector<int> cs(cm.size());
for(int i=0;i<(int)cs.size();i++) cs[i]=cm[i].v;
return cs;
}
};
template<int X> constexpr int NTT<X>::md;
template<int X> constexpr int NTT<X>::rt;
#endif
//BEGIN CUT HERE
struct ArbitraryModConvolution{
using ll = long long;
static NTT<0> ntt0;
static NTT<1> ntt1;
static NTT<2> ntt2;
static constexpr int pow(int a,int b,int md){
int res=1;
a=a%md;
while(b){
if(b&1) res=(ll)res*a%md;
a=(ll)a*a%md;
b>>=1;
}
return res;
}
static constexpr int inv(int x,int md){
return pow(x,md-2,md);
}
inline void garner(int &c0,int c1,int c2,int m01,int MOD){
static constexpr int r01=inv(ntt0.md,ntt1.md);
static constexpr int r02=inv(ntt0.md,ntt2.md);
static constexpr int r12=inv(ntt1.md,ntt2.md);
c1=(ll)(c1-c0)*r01%ntt1.md;
if(c1<0) c1+=ntt1.md;
c2=(ll)(c2-c0)*r02%ntt2.md;
c2=(ll)(c2-c1)*r12%ntt2.md;
if(c2<0) c2+=ntt2.md;
c0+=(ll)c1*ntt0.md%MOD;
if(c0>=MOD) c0-=MOD;
c0+=(ll)c2*m01%MOD;
if(c0>=MOD) c0-=MOD;
}
inline void garner(vector< vector<int> > &cs,int MOD){
int m01 =(ll)ntt0.md*ntt1.md%MOD;
int sz=cs[0].size();
for(int i=0;i<sz;i++) garner(cs[0][i],cs[1][i],cs[2][i],m01,MOD);
}
vector<int> multiply(vector<int> as,vector<int> bs,int MOD){
vector< vector<int> > cs(3);
cs[0]=ntt0.multiply(as,bs);
cs[1]=ntt1.multiply(as,bs);
cs[2]=ntt2.multiply(as,bs);
size_t sz=as.size()+bs.size()-1;
for(auto& v:cs) v.resize(sz);
garner(cs,MOD);
return cs[0];
}
template<typename T,T MOD>
decltype(auto) multiply(vector< Mint<T, MOD> > am,
vector< Mint<T, MOD> > bm){
using M = Mint<T, MOD>;
vector<int> as(am.size()),bs(bm.size());
for(int i=0;i<(int)as.size();i++) as[i]=am[i].v;
for(int i=0;i<(int)bs.size();i++) bs[i]=bm[i].v;
vector<int> cs=multiply(as,bs,MOD);
vector<M> cm(cs.size());
for(int i=0;i<(int)cm.size();i++) cm[i]=M(cs[i]);
return cm;
}
};
NTT<0> ArbitraryModConvolution::ntt0;
NTT<1> ArbitraryModConvolution::ntt1;
NTT<2> ArbitraryModConvolution::ntt2;
//END CUT HERE
#ifndef call_from_test
template<typename M>
class Enumeration{
private:
static vector<M> fact,finv,invs;
public:
static void init(int n){
n=min<decltype(M::mod)>(n,M::mod-1);
int m=fact.size();
if(n<m) return;
fact.resize(n+1,1);
finv.resize(n+1,1);
invs.resize(n+1,1);
if(m==0) m=1;
for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);
finv[n]=M(1)/fact[n];
for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);
for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];
}
static M Fact(int n){
init(n);
return fact[n];
}
static M Finv(int n){
init(n);
return finv[n];
}
static M Invs(int n){
init(n);
return invs[n];
}
static M C(int n,int k){
if(n<k||k<0) return M(0);
init(n);
return fact[n]*finv[n-k]*finv[k];
}
static M P(int n,int k){
if(n<k||k<0) return M(0);
init(n);
return fact[n]*finv[n-k];
}
static M H(int n,int k){
if(n<0||k<0) return M(0);
if(!n&&!k) return M(1);
init(n+k-1);
return C(n+k-1,k);
}
static M S(int n,int k){
M res;
init(k);
for(int i=1;i<=k;i++){
M tmp=C(k,i)*M(i).pow(n);
if((k-i)&1) res-=tmp;
else res+=tmp;
}
return res*=finv[k];
}
static vector<vector<M> > D(int n,int m){
vector<vector<M> > dp(n+1,vector<M>(m+1,0));
dp[0][0]=M(1);
for(int i=0;i<=n;i++){
for(int j=1;j<=m;j++){
if(i-j>=0) dp[i][j]=dp[i][j-1]+dp[i-j][j];
else dp[i][j]=dp[i][j-1];
}
}
return dp;
}
static M B(int n,int k){
if(n==0) return M(1);
k=min(k,n);
init(k);
vector<M> dp(k+1);
dp[0]=M(1);
for(int i=1;i<=k;i++)
dp[i]=dp[i-1]+((i&1)?-finv[i]:finv[i]);
M res;
for(int i=1;i<=k;i++)
res+=M(i).pow(n)*finv[i]*dp[k-i];
return res;
}
static M montmort(int n){
M res;
init(n);
for(int k=2;k<=n;k++){
if(k&1) res-=finv[k];
else res+=finv[k];
}
return res*=fact[n];
}
static M LagrangePolynomial(vector<M> &y,M t){
int n=y.size()-1;
if(t.v<=n) return y[t.v];
init(n+1);
vector<M> dp(n+1,1),pd(n+1,1);
for(int i=0;i<n;i++) dp[i+1]=dp[i]*(t-M(i));
for(int i=n;i>0;i--) pd[i-1]=pd[i]*(t-M(i));
M res{0};
for(int i=0;i<=n;i++){
M tmp=y[i]*dp[i]*pd[i]*finv[i]*finv[n-i];
if((n-i)&1) res-=tmp;
else res+=tmp;
}
return res;
}
};
template<typename M>
vector<M> Enumeration<M>::fact = vector<M>();
template<typename M>
vector<M> Enumeration<M>::finv = vector<M>();
template<typename M>
vector<M> Enumeration<M>::invs = vector<M>();
//INSERT ABOVE HERE
signed YUKI_829(){
cin.tie(0);
ios::sync_with_stdio(0);
using ll = long long;
int n,b;
cin>>n>>b;
vector<int> s(n);
for(Int i=0;i<n;i++) cin>>s[i];
using M = Mint<int>;
using E = Enumeration<M>;
E::init(3e5);
vector<int> cnt(n,0);
for(int i=0;i<n;i++) cnt[s[i]]++;
using P = pair<int, vector<int> > ;
priority_queue<P> pq;
pq.emplace(-1,vector<int>(1,1));
int sum=0;
for(int i=n-1;i>=0;i--){
if(cnt[i]==0) continue;
M x=E::H(sum,cnt[i]);
M y=E::H(sum+1,cnt[i])-x;
x*=E::Fact(cnt[i]);
y*=E::Fact(cnt[i]);
pq.emplace(-2,vector<int>({x.v,y.v}));
sum+=cnt[i];
}
const int MOD = 1e9+7;
ArbitraryModConvolution arb;
while(pq.size()>1u){
auto as=pq.top().second;pq.pop();
auto bs=pq.top().second;pq.pop();
auto cs=arb.multiply(as,bs,MOD);
pq.emplace(-(int)cs.size(),cs);
}
auto dp=pq.top().second;
M ans(0),res(1);
for(int j=0;j<(int)dp.size();j++){
ans+=M((ll)j*(ll)dp[j])*res;
res*=M(b);
}
cout<<ans.v<<endl;
return 0;
}
/*
verified on 2019/09/08
https://yukicoder.me/problems/no/829
*/
signed main(){
YUKI_829();
return 0;
}
#endif
beet