結果
| 問題 |
No.829 成長関数インフレ中
|
| コンテスト | |
| ユーザー |
beet
|
| 提出日時 | 2019-10-24 23:44:00 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 14,276 bytes |
| コンパイル時間 | 3,423 ms |
| コンパイル使用メモリ | 223,164 KB |
| 最終ジャッジ日時 | 2025-01-08 00:54:51 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | WA * 22 |
ソースコード
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
#define call_from_test
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
#endif
//BEGIN CUT HERE
namespace FFT{
using dbl = double;
struct num{
dbl x,y;
num(){x=y=0;}
num(dbl x,dbl y):x(x),y(y){}
};
inline num operator+(num a,num b){
return num(a.x+b.x,a.y+b.y);
}
inline num operator-(num a,num b){
return num(a.x-b.x,a.y-b.y);
}
inline num operator*(num a,num b){
return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
inline num conj(num a){
return num(a.x,-a.y);
}
int base=1;
vector<num> rts={{0,0},{1,0}};
vector<int> rev={0,1};
const dbl PI=acosl(-1.0);
void ensure_base(int nbase){
if(nbase<=base) return;
rev.resize(1<<nbase);
for(int i=0;i<(1<<nbase);i++)
rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1));
rts.resize(1<<nbase);
while(base<nbase){
dbl angle=2*PI/(1<<(base+1));
for(int i=1<<(base-1);i<(1<<base);i++){
rts[i<<1]=rts[i];
dbl angle_i=angle*(2*i+1-(1<<base));
rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i));
}
base++;
}
}
void fft(vector<num> &a,int n=-1){
if(n==-1) n=a.size();
assert((n&(n-1))==0);
int zeros=__builtin_ctz(n);
ensure_base(zeros);
int shift=base-zeros;
for(int i=0;i<n;i++)
if(i<(rev[i]>>shift))
swap(a[i],a[rev[i]>>shift]);
for(int k=1;k<n;k<<=1){
for(int i=0;i<n;i+=2*k){
for(int j=0;j<k;j++){
num z=a[i+j+k]*rts[j+k];
a[i+j+k]=a[i+j]-z;
a[i+j]=a[i+j]+z;
}
}
}
}
vector<num> fa;
vector<long long> multiply(vector<int> &a,vector<int> &b){
int need=a.size()+b.size()-1;
int nbase=0;
while((1<<nbase)<need) nbase++;
ensure_base(nbase);
int sz=1<<nbase;
if(sz>(int)fa.size()) fa.resize(sz);
for(int i=0;i<sz;i++){
int x=(i<(int)a.size()?a[i]:0);
int y=(i<(int)b.size()?b[i]:0);
fa[i]=num(x,y);
}
fft(fa,sz);
num r(0,-0.25/sz);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r;
if(i!=j)
fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r;
fa[i]=z;
}
fft(fa,sz);
vector<long long> res(need);
for(int i=0;i<need;i++)
res[i]=fa[i].x+0.5;
return res;
}
};
//END CUT HERE
#ifndef call_from_test
signed main(){
int n;
scanf("%d",&n);
vector<int> a(n+1,0),b(n+1,0);
for(int i=1;i<=n;i++) scanf("%d %d",&a[i],&b[i]);
auto c=FFT::multiply(a,b);
for(int i=1;i<=n*2;i++) printf("%lld\n",c[i]);
return 0;
}
/*
verified on 2017/11/14
http://atc001.contest.atcoder.jp/tasks/fft_c
*/
#endif
#undef call_from_test
#endif
//BEGIN CUT HERE
template<typename T>
struct ArbitraryModConvolution{
using dbl=FFT::dbl;
using num=FFT::num;
vector<T> multiply(vector<T> as,vector<T> bs){
int need=as.size()+bs.size()-1;
int sz=1;
while(sz<need) sz<<=1;
vector<num> fa(sz),fb(sz);
for(int i=0;i<(int)as.size();i++)
fa[i]=num(as[i].v&((1<<15)-1),as[i].v>>15);
for(int i=0;i<(int)bs.size();i++)
fb[i]=num(bs[i].v&((1<<15)-1),bs[i].v>>15);
fft(fa,sz);fft(fb,sz);
dbl ratio=0.25/sz;
num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1);
for(int i=0;i<=(sz>>1);i++){
int j=(sz-i)&(sz-1);
num a1=(fa[i]+conj(fa[j]));
num a2=(fa[i]-conj(fa[j]))*r2;
num b1=(fb[i]+conj(fb[j]))*r3;
num b2=(fb[i]-conj(fb[j]))*r4;
if(i!=j){
num c1=(fa[j]+conj(fa[i]));
num c2=(fa[j]-conj(fa[i]))*r2;
num d1=(fb[j]+conj(fb[i]))*r3;
num d2=(fb[j]-conj(fb[i]))*r4;
fa[i]=c1*d1+c2*d2*r5;
fb[i]=c1*d2+c2*d1;
}
fa[j]=a1*b1+a2*b2*r5;
fb[j]=a1*b2+a2*b1;
}
fft(fa,sz);fft(fb,sz);
vector<T> cs(need);
using ll = long long;
for(int i=0;i<need;i++){
ll aa=T(llround(fa[i].x)).v;
ll bb=T(llround(fb[i].x)).v;
ll cc=T(llround(fa[i].y)).v;
cs[i]=T(aa+(bb<<15)+(cc<<30));
}
return cs;
}
};
//END CUT HERE
#ifndef call_from_test
#define call_from_test
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
using Int = long long;
#endif
//BEGIN CUT HERE
template<typename T,T MOD = 1000000007>
struct Mint{
static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;};
Mint operator-(Mint a) const{return Mint(v)-=a;};
Mint operator*(Mint a) const{return Mint(v)*=a;};
Mint operator/(Mint a) const{return Mint(v)/=a;};
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T,T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T,T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
//END CUT HERE
#ifndef call_from_test
//INSERT ABOVE HERE
signed ABC127_E(){
cin.tie(0);
ios::sync_with_stdio(0);
int h,w,k;
cin>>h>>w>>k;
using M = Mint<int>;
M ans{0};
for(int d=1;d<h;d++)
ans+=M(d)*M(h-d)*M(w)*M(w);
for(int d=1;d<w;d++)
ans+=M(d)*M(w-d)*M(h)*M(h);
ans*=M::comb(h*w-2,k-2);
cout<<ans<<endl;
return 0;
}
/*
verified on 2019/06/12
https://atcoder.jp/contests/abc127/tasks/abc127_e
*/
signed main(){
//ABC127_E();
return 0;
}
#endif
#ifndef call_from_test
#include<bits/stdc++.h>
using namespace std;
using Int = long long;
template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;}
template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;}
#endif
//BEGIN CUT HERE
template<typename M>
class Enumeration{
private:
static vector<M> fact,finv,invs;
public:
static void init(int n){
n=min<decltype(M::mod)>(n,M::mod-1);
int m=fact.size();
if(n<m) return;
fact.resize(n+1,1);
finv.resize(n+1,1);
invs.resize(n+1,1);
if(m==0) m=1;
for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i);
finv[n]=M(1)/fact[n];
for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i);
for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1];
}
static M Fact(int n){
init(n);
return fact[n];
}
static M Finv(int n){
init(n);
return finv[n];
}
static M Invs(int n){
init(n);
return invs[n];
}
static M C(int n,int k){
if(n<k||k<0) return M(0);
init(n);
return fact[n]*finv[n-k]*finv[k];
}
static M P(int n,int k){
if(n<k||k<0) return M(0);
init(n);
return fact[n]*finv[n-k];
}
static M H(int n,int k){
if(n<0||k<0) return M(0);
if(!n&&!k) return M(1);
init(n+k-1);
return C(n+k-1,k);
}
static M S(int n,int k){
init(k);
M res(0);
for(int i=1;i<=k;i++){
M tmp=C(k,i)*M(i).pow(n);
if((k-i)&1) res-=tmp;
else res+=tmp;
}
return res*=finv[k];
}
static vector< vector<M> > D(int n,int m){
vector< vector<M> > dp(n+1,vector<M>(m+1,0));
dp[0][0]=M(1);
for(int i=0;i<=n;i++){
for(int j=1;j<=m;j++){
if(i-j>=0) dp[i][j]=dp[i][j-1]+dp[i-j][j];
else dp[i][j]=dp[i][j-1];
}
}
return dp;
}
static M B(int n,int k){
if(n==0) return M(1);
k=min(k,n);
init(k);
vector<M> dp(k+1);
dp[0]=M(1);
for(int i=1;i<=k;i++)
dp[i]=dp[i-1]+((i&1)?-finv[i]:finv[i]);
M res(0);
for(int i=1;i<=k;i++)
res+=M(i).pow(n)*finv[i]*dp[k-i];
return res;
}
static M montmort(int n){
init(n);
M res(0);
for(int k=2;k<=n;k++){
if(k&1) res-=finv[k];
else res+=finv[k];
}
return res*=fact[n];
}
static M LagrangePolynomial(vector<M> &y,M t){
int n=y.size()-1;
if(t.v<=n) return y[t.v];
init(n+1);
vector<M> dp(n+1,1),pd(n+1,1);
for(int i=0;i<n;i++) dp[i+1]=dp[i]*(t-M(i));
for(int i=n;i>0;i--) pd[i-1]=pd[i]*(t-M(i));
M res(0);
for(int i=0;i<=n;i++){
M tmp=y[i]*dp[i]*pd[i]*finv[i]*finv[n-i];
if((n-i)&1) res-=tmp;
else res+=tmp;
}
return res;
}
};
template<typename M>
vector<M> Enumeration<M>::fact=vector<M>();
template<typename M>
vector<M> Enumeration<M>::finv=vector<M>();
template<typename M>
vector<M> Enumeration<M>::invs=vector<M>();
//END CUT HERE
#ifndef call_from_test
template<typename T,T MOD = 1000000007>
struct Mint{
static constexpr T mod = MOD;
T v;
Mint():v(0){}
Mint(signed v):v(v){}
Mint(long long t){v=t%MOD;if(v<0) v+=MOD;}
Mint pow(long long k){
Mint res(1),tmp(v);
while(k){
if(k&1) res*=tmp;
tmp*=tmp;
k>>=1;
}
return res;
}
static Mint add_identity(){return Mint(0);}
static Mint mul_identity(){return Mint(1);}
Mint inv(){return pow(MOD-2);}
Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;}
Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;}
Mint& operator/=(Mint a){return (*this)*=a.inv();}
Mint operator+(Mint a) const{return Mint(v)+=a;};
Mint operator-(Mint a) const{return Mint(v)-=a;};
Mint operator*(Mint a) const{return Mint(v)*=a;};
Mint operator/(Mint a) const{return Mint(v)/=a;};
Mint operator-() const{return v?Mint(MOD-v):Mint(v);}
bool operator==(const Mint a)const{return v==a.v;}
bool operator!=(const Mint a)const{return v!=a.v;}
bool operator <(const Mint a)const{return v <a.v;}
static Mint comb(long long n,int k){
Mint num(1),dom(1);
for(int i=0;i<k;i++){
num*=Mint(n-i);
dom*=Mint(i+1);
}
return num/dom;
}
};
template<typename T,T MOD> constexpr T Mint<T, MOD>::mod;
template<typename T,T MOD>
ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;}
template<typename T>
map<T, int> factorize(T x){
map<T, int> res;
for(int i=2;i*i<=x;i++){
while(x%i==0){
x/=i;
res[i]++;
}
}
if(x!=1) res[x]++;
return res;
}
//INSERT ABOVE HERE
signed ABC110_D(){
int n;
using M = Mint<int>;
using E = Enumeration<M>;
M m;
scanf("%d %d",&n,&m.v);
E::init(n+100);
Mint<int> ans(1);
auto x=factorize(m.v);
for(auto p:x) ans*=E::H(n,p.second);
printf("%d\n",ans.v);
return 0;
}
/*
verified on 2019/10/08
https://atcoder.jp/contests/abc110/tasks/abc110_d
*/
//montmort
signed ARC009_C(){
Int n,k;
scanf("%lld %lld",&n,&k);
const int MOD = 1777777777;
using M = Mint<long long, MOD>;
using E = Enumeration<M>;
M a=E::montmort(k)*M::comb(n,k);
printf("%lld\n",a.v);
return 0;
}
/*
verified on 2019/10/08
https://atcoder.jp/contests/arc009/tasks/arc009_3
*/
signed ARC033_D(){
int n;
scanf("%d",&n);
using M = Mint<int>;
using E = Enumeration<M>;
vector<M> y(n+1);
for(Int i=0;i<=n;i++) scanf("%d",&y[i].v);
int t;
scanf("%d",&t);
printf("%d\n",E::LagrangePolynomial(y,M(t)).v);
return 0;
}
/*
verified on 2019/10/08
https://atcoder.jp/contests/arc033/tasks/arc033_4
*/
signed YUKI_117(){
int T;
scanf("%d\n",&T);
using M = Mint<int>;
using E = Enumeration<M>;
E::init(2e6+100);
while(T--){
char c;
int n,k;
scanf("%c(%d,%d)\n",&c,&n,&k);
if(c=='C') printf("%d\n",E::C(n,k).v);
if(c=='P') printf("%d\n",E::P(n,k).v);
if(c=='H') printf("%d\n",E::H(n,k).v);
}
return 0;
}
/*
verified on 2019/10/08
https://yukicoder.me/problems/no/117
*/
signed YUKI_042(){
using M = Mint<int, int(1e9+9)>;
using E = Enumeration<M>;
const int MAX = 666 * 6 + 10;
vector<M> dp(MAX,0);
dp[0]=M(1);
for(int x:{1,5,10,50,100,500})
for(int j=x;j<MAX;j++) dp[j]+=dp[j-x];
int T;
scanf("%d",&T);
while(T--){
using ll = long long;
ll m;
scanf("%lld",&m);
vector<M> y(6);
for(int i=0;i<6;i++) y[i]=dp[(m%500)+(i*500)];
M ans=E::LagrangePolynomial(y,M(m/500));
printf("%d\n",ans.v);
}
return 0;
}
/*
verified on 2019/10/08
https://yukicoder.me/problems/no/42
*/
signed CFR315_B(){
cin.tie(0);
ios::sync_with_stdio(0);
int n;
cin>>n;
using M = Mint<int>;
using E = Enumeration<M>;
E::init(n+1);
M res;
for(int i=0;i<n;i++)
res+=E::C(n,i)*E::B(i,i);
cout<<res.v<<endl;
return 0;
}
/*
verified on 2019/10/08
https://codeforces.com/contest/568/problem/B
*/
signed main(){
//ABC110_D();
//ARC009_C();
//ARC033_D();
//YUKI_117();
//YUKI_042();
//CFR315_B();
return 0;
}
#endif
#undef call_from_test
//INSERT ABOVE HERE
signed YUKI_829(){
cin.tie(0);
ios::sync_with_stdio(0);
int n,b;
cin>>n>>b;
vector<int> s(n);
for(int i=0;i<n;i++) cin>>s[i];
using M = Mint<int>;
using E = Enumeration<M>;
E::init(3e5);
vector<int> cnt(n,0);
for(int i=0;i<n;i++) cnt[s[i]]++;
using P = pair<int, vector<M> > ;
priority_queue<P> pq;
pq.emplace(-1,vector<M>(1,1));
int sum=0;
for(int i=n-1;i>=0;i--){
if(cnt[i]==0) continue;
M x=E::H(sum,cnt[i]);
M y=E::H(sum+1,cnt[i])-x;
x*=E::Fact(cnt[i]);
y*=E::Fact(cnt[i]);
pq.emplace(-2,vector<M>({x,y}));
sum+=cnt[i];
}
ArbitraryModConvolution<M> arb;
while(pq.size()>1u){
auto as=pq.top().second;pq.pop();
auto bs=pq.top().second;pq.pop();
auto cs=arb.multiply(as,bs);
pq.emplace(-(int)cs.size(),cs);
}
auto dp=pq.top().second;
M ans(0),res(1);
for(int j=0;j<(int)dp.size();j++){
ans+=M(j)*dp[j]*res;
res*=M(b);
}
cout<<ans.v<<endl;
return 0;
}
/*
verified on 2019/09/08
https://yukicoder.me/problems/no/829
*/
signed main(){
//YUKI_829();
return 0;
}
#endif
beet