結果
問題 | No.829 成長関数インフレ中 |
ユーザー | beet |
提出日時 | 2019-10-24 23:44:17 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 560 ms / 2,000 ms |
コード長 | 14,274 bytes |
コンパイル時間 | 2,399 ms |
コンパイル使用メモリ | 231,284 KB |
実行使用メモリ | 35,088 KB |
最終ジャッジ日時 | 2024-07-18 08:22:53 |
合計ジャッジ時間 | 5,506 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 8 ms
6,912 KB |
testcase_01 | AC | 8 ms
6,940 KB |
testcase_02 | AC | 8 ms
6,940 KB |
testcase_03 | AC | 8 ms
6,940 KB |
testcase_04 | AC | 7 ms
6,944 KB |
testcase_05 | AC | 7 ms
6,944 KB |
testcase_06 | AC | 7 ms
6,948 KB |
testcase_07 | AC | 7 ms
6,944 KB |
testcase_08 | AC | 7 ms
6,940 KB |
testcase_09 | AC | 7 ms
6,940 KB |
testcase_10 | AC | 7 ms
6,940 KB |
testcase_11 | AC | 7 ms
6,940 KB |
testcase_12 | AC | 19 ms
8,320 KB |
testcase_13 | AC | 8 ms
6,944 KB |
testcase_14 | AC | 14 ms
8,064 KB |
testcase_15 | AC | 111 ms
13,652 KB |
testcase_16 | AC | 234 ms
20,712 KB |
testcase_17 | AC | 387 ms
23,284 KB |
testcase_18 | AC | 518 ms
34,276 KB |
testcase_19 | AC | 437 ms
23,872 KB |
testcase_20 | AC | 560 ms
35,088 KB |
testcase_21 | AC | 13 ms
7,808 KB |
ソースコード
#ifndef call_from_test #include<bits/stdc++.h> using namespace std; #define call_from_test #ifndef call_from_test #include<bits/stdc++.h> using namespace std; #endif //BEGIN CUT HERE namespace FFT{ using dbl = double; struct num{ dbl x,y; num(){x=y=0;} num(dbl x,dbl y):x(x),y(y){} }; inline num operator+(num a,num b){ return num(a.x+b.x,a.y+b.y); } inline num operator-(num a,num b){ return num(a.x-b.x,a.y-b.y); } inline num operator*(num a,num b){ return num(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x); } inline num conj(num a){ return num(a.x,-a.y); } int base=1; vector<num> rts={{0,0},{1,0}}; vector<int> rev={0,1}; const dbl PI=acosl(-1.0); void ensure_base(int nbase){ if(nbase<=base) return; rev.resize(1<<nbase); for(int i=0;i<(1<<nbase);i++) rev[i]=(rev[i>>1]>>1)+((i&1)<<(nbase-1)); rts.resize(1<<nbase); while(base<nbase){ dbl angle=2*PI/(1<<(base+1)); for(int i=1<<(base-1);i<(1<<base);i++){ rts[i<<1]=rts[i]; dbl angle_i=angle*(2*i+1-(1<<base)); rts[(i<<1)+1]=num(cos(angle_i),sin(angle_i)); } base++; } } void fft(vector<num> &a,int n=-1){ if(n==-1) n=a.size(); assert((n&(n-1))==0); int zeros=__builtin_ctz(n); ensure_base(zeros); int shift=base-zeros; for(int i=0;i<n;i++) if(i<(rev[i]>>shift)) swap(a[i],a[rev[i]>>shift]); for(int k=1;k<n;k<<=1){ for(int i=0;i<n;i+=2*k){ for(int j=0;j<k;j++){ num z=a[i+j+k]*rts[j+k]; a[i+j+k]=a[i+j]-z; a[i+j]=a[i+j]+z; } } } } vector<num> fa; vector<long long> multiply(vector<int> &a,vector<int> &b){ int need=a.size()+b.size()-1; int nbase=0; while((1<<nbase)<need) nbase++; ensure_base(nbase); int sz=1<<nbase; if(sz>(int)fa.size()) fa.resize(sz); for(int i=0;i<sz;i++){ int x=(i<(int)a.size()?a[i]:0); int y=(i<(int)b.size()?b[i]:0); fa[i]=num(x,y); } fft(fa,sz); num r(0,-0.25/sz); for(int i=0;i<=(sz>>1);i++){ int j=(sz-i)&(sz-1); num z=(fa[j]*fa[j]-conj(fa[i]*fa[i]))*r; if(i!=j) fa[j]=(fa[i]*fa[i]-conj(fa[j]*fa[j]))*r; fa[i]=z; } fft(fa,sz); vector<long long> res(need); for(int i=0;i<need;i++) res[i]=fa[i].x+0.5; return res; } }; //END CUT HERE #ifndef call_from_test signed main(){ int n; scanf("%d",&n); vector<int> a(n+1,0),b(n+1,0); for(int i=1;i<=n;i++) scanf("%d %d",&a[i],&b[i]); auto c=FFT::multiply(a,b); for(int i=1;i<=n*2;i++) printf("%lld\n",c[i]); return 0; } /* verified on 2017/11/14 http://atc001.contest.atcoder.jp/tasks/fft_c */ #endif #undef call_from_test #endif //BEGIN CUT HERE template<typename T> struct ArbitraryModConvolution{ using dbl=FFT::dbl; using num=FFT::num; vector<T> multiply(vector<T> as,vector<T> bs){ int need=as.size()+bs.size()-1; int sz=1; while(sz<need) sz<<=1; vector<num> fa(sz),fb(sz); for(int i=0;i<(int)as.size();i++) fa[i]=num(as[i].v&((1<<15)-1),as[i].v>>15); for(int i=0;i<(int)bs.size();i++) fb[i]=num(bs[i].v&((1<<15)-1),bs[i].v>>15); fft(fa,sz);fft(fb,sz); dbl ratio=0.25/sz; num r2(0,-1),r3(ratio,0),r4(0,-ratio),r5(0,1); for(int i=0;i<=(sz>>1);i++){ int j=(sz-i)&(sz-1); num a1=(fa[i]+conj(fa[j])); num a2=(fa[i]-conj(fa[j]))*r2; num b1=(fb[i]+conj(fb[j]))*r3; num b2=(fb[i]-conj(fb[j]))*r4; if(i!=j){ num c1=(fa[j]+conj(fa[i])); num c2=(fa[j]-conj(fa[i]))*r2; num d1=(fb[j]+conj(fb[i]))*r3; num d2=(fb[j]-conj(fb[i]))*r4; fa[i]=c1*d1+c2*d2*r5; fb[i]=c1*d2+c2*d1; } fa[j]=a1*b1+a2*b2*r5; fb[j]=a1*b2+a2*b1; } fft(fa,sz);fft(fb,sz); vector<T> cs(need); using ll = long long; for(int i=0;i<need;i++){ ll aa=T(llround(fa[i].x)).v; ll bb=T(llround(fb[i].x)).v; ll cc=T(llround(fa[i].y)).v; cs[i]=T(aa+(bb<<15)+(cc<<30)); } return cs; } }; //END CUT HERE #ifndef call_from_test #define call_from_test #ifndef call_from_test #include<bits/stdc++.h> using namespace std; using Int = long long; #endif //BEGIN CUT HERE template<typename T,T MOD = 1000000007> struct Mint{ static constexpr T mod = MOD; T v; Mint():v(0){} Mint(signed v):v(v){} Mint(long long t){v=t%MOD;if(v<0) v+=MOD;} Mint pow(long long k){ Mint res(1),tmp(v); while(k){ if(k&1) res*=tmp; tmp*=tmp; k>>=1; } return res; } static Mint add_identity(){return Mint(0);} static Mint mul_identity(){return Mint(1);} Mint inv(){return pow(MOD-2);} Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;} Mint& operator/=(Mint a){return (*this)*=a.inv();} Mint operator+(Mint a) const{return Mint(v)+=a;}; Mint operator-(Mint a) const{return Mint(v)-=a;}; Mint operator*(Mint a) const{return Mint(v)*=a;}; Mint operator/(Mint a) const{return Mint(v)/=a;}; Mint operator-() const{return v?Mint(MOD-v):Mint(v);} bool operator==(const Mint a)const{return v==a.v;} bool operator!=(const Mint a)const{return v!=a.v;} bool operator <(const Mint a)const{return v <a.v;} static Mint comb(long long n,int k){ Mint num(1),dom(1); for(int i=0;i<k;i++){ num*=Mint(n-i); dom*=Mint(i+1); } return num/dom; } }; template<typename T,T MOD> constexpr T Mint<T, MOD>::mod; template<typename T,T MOD> ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;} //END CUT HERE #ifndef call_from_test //INSERT ABOVE HERE signed ABC127_E(){ cin.tie(0); ios::sync_with_stdio(0); int h,w,k; cin>>h>>w>>k; using M = Mint<int>; M ans{0}; for(int d=1;d<h;d++) ans+=M(d)*M(h-d)*M(w)*M(w); for(int d=1;d<w;d++) ans+=M(d)*M(w-d)*M(h)*M(h); ans*=M::comb(h*w-2,k-2); cout<<ans<<endl; return 0; } /* verified on 2019/06/12 https://atcoder.jp/contests/abc127/tasks/abc127_e */ signed main(){ //ABC127_E(); return 0; } #endif #ifndef call_from_test #include<bits/stdc++.h> using namespace std; using Int = long long; template<typename T1,typename T2> inline void chmin(T1 &a,T2 b){if(a>b) a=b;} template<typename T1,typename T2> inline void chmax(T1 &a,T2 b){if(a<b) a=b;} #endif //BEGIN CUT HERE template<typename M> class Enumeration{ private: static vector<M> fact,finv,invs; public: static void init(int n){ n=min<decltype(M::mod)>(n,M::mod-1); int m=fact.size(); if(n<m) return; fact.resize(n+1,1); finv.resize(n+1,1); invs.resize(n+1,1); if(m==0) m=1; for(int i=m;i<=n;i++) fact[i]=fact[i-1]*M(i); finv[n]=M(1)/fact[n]; for(int i=n;i>=m;i--) finv[i-1]=finv[i]*M(i); for(int i=m;i<=n;i++) invs[i]=finv[i]*fact[i-1]; } static M Fact(int n){ init(n); return fact[n]; } static M Finv(int n){ init(n); return finv[n]; } static M Invs(int n){ init(n); return invs[n]; } static M C(int n,int k){ if(n<k||k<0) return M(0); init(n); return fact[n]*finv[n-k]*finv[k]; } static M P(int n,int k){ if(n<k||k<0) return M(0); init(n); return fact[n]*finv[n-k]; } static M H(int n,int k){ if(n<0||k<0) return M(0); if(!n&&!k) return M(1); init(n+k-1); return C(n+k-1,k); } static M S(int n,int k){ init(k); M res(0); for(int i=1;i<=k;i++){ M tmp=C(k,i)*M(i).pow(n); if((k-i)&1) res-=tmp; else res+=tmp; } return res*=finv[k]; } static vector< vector<M> > D(int n,int m){ vector< vector<M> > dp(n+1,vector<M>(m+1,0)); dp[0][0]=M(1); for(int i=0;i<=n;i++){ for(int j=1;j<=m;j++){ if(i-j>=0) dp[i][j]=dp[i][j-1]+dp[i-j][j]; else dp[i][j]=dp[i][j-1]; } } return dp; } static M B(int n,int k){ if(n==0) return M(1); k=min(k,n); init(k); vector<M> dp(k+1); dp[0]=M(1); for(int i=1;i<=k;i++) dp[i]=dp[i-1]+((i&1)?-finv[i]:finv[i]); M res(0); for(int i=1;i<=k;i++) res+=M(i).pow(n)*finv[i]*dp[k-i]; return res; } static M montmort(int n){ init(n); M res(0); for(int k=2;k<=n;k++){ if(k&1) res-=finv[k]; else res+=finv[k]; } return res*=fact[n]; } static M LagrangePolynomial(vector<M> &y,M t){ int n=y.size()-1; if(t.v<=n) return y[t.v]; init(n+1); vector<M> dp(n+1,1),pd(n+1,1); for(int i=0;i<n;i++) dp[i+1]=dp[i]*(t-M(i)); for(int i=n;i>0;i--) pd[i-1]=pd[i]*(t-M(i)); M res(0); for(int i=0;i<=n;i++){ M tmp=y[i]*dp[i]*pd[i]*finv[i]*finv[n-i]; if((n-i)&1) res-=tmp; else res+=tmp; } return res; } }; template<typename M> vector<M> Enumeration<M>::fact=vector<M>(); template<typename M> vector<M> Enumeration<M>::finv=vector<M>(); template<typename M> vector<M> Enumeration<M>::invs=vector<M>(); //END CUT HERE #ifndef call_from_test template<typename T,T MOD = 1000000007> struct Mint{ static constexpr T mod = MOD; T v; Mint():v(0){} Mint(signed v):v(v){} Mint(long long t){v=t%MOD;if(v<0) v+=MOD;} Mint pow(long long k){ Mint res(1),tmp(v); while(k){ if(k&1) res*=tmp; tmp*=tmp; k>>=1; } return res; } static Mint add_identity(){return Mint(0);} static Mint mul_identity(){return Mint(1);} Mint inv(){return pow(MOD-2);} Mint& operator+=(Mint a){v+=a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator-=(Mint a){v+=MOD-a.v;if(v>=MOD)v-=MOD;return *this;} Mint& operator*=(Mint a){v=1LL*v*a.v%MOD;return *this;} Mint& operator/=(Mint a){return (*this)*=a.inv();} Mint operator+(Mint a) const{return Mint(v)+=a;}; Mint operator-(Mint a) const{return Mint(v)-=a;}; Mint operator*(Mint a) const{return Mint(v)*=a;}; Mint operator/(Mint a) const{return Mint(v)/=a;}; Mint operator-() const{return v?Mint(MOD-v):Mint(v);} bool operator==(const Mint a)const{return v==a.v;} bool operator!=(const Mint a)const{return v!=a.v;} bool operator <(const Mint a)const{return v <a.v;} static Mint comb(long long n,int k){ Mint num(1),dom(1); for(int i=0;i<k;i++){ num*=Mint(n-i); dom*=Mint(i+1); } return num/dom; } }; template<typename T,T MOD> constexpr T Mint<T, MOD>::mod; template<typename T,T MOD> ostream& operator<<(ostream &os,Mint<T, MOD> m){os<<m.v;return os;} template<typename T> map<T, int> factorize(T x){ map<T, int> res; for(int i=2;i*i<=x;i++){ while(x%i==0){ x/=i; res[i]++; } } if(x!=1) res[x]++; return res; } //INSERT ABOVE HERE signed ABC110_D(){ int n; using M = Mint<int>; using E = Enumeration<M>; M m; scanf("%d %d",&n,&m.v); E::init(n+100); Mint<int> ans(1); auto x=factorize(m.v); for(auto p:x) ans*=E::H(n,p.second); printf("%d\n",ans.v); return 0; } /* verified on 2019/10/08 https://atcoder.jp/contests/abc110/tasks/abc110_d */ //montmort signed ARC009_C(){ Int n,k; scanf("%lld %lld",&n,&k); const int MOD = 1777777777; using M = Mint<long long, MOD>; using E = Enumeration<M>; M a=E::montmort(k)*M::comb(n,k); printf("%lld\n",a.v); return 0; } /* verified on 2019/10/08 https://atcoder.jp/contests/arc009/tasks/arc009_3 */ signed ARC033_D(){ int n; scanf("%d",&n); using M = Mint<int>; using E = Enumeration<M>; vector<M> y(n+1); for(Int i=0;i<=n;i++) scanf("%d",&y[i].v); int t; scanf("%d",&t); printf("%d\n",E::LagrangePolynomial(y,M(t)).v); return 0; } /* verified on 2019/10/08 https://atcoder.jp/contests/arc033/tasks/arc033_4 */ signed YUKI_117(){ int T; scanf("%d\n",&T); using M = Mint<int>; using E = Enumeration<M>; E::init(2e6+100); while(T--){ char c; int n,k; scanf("%c(%d,%d)\n",&c,&n,&k); if(c=='C') printf("%d\n",E::C(n,k).v); if(c=='P') printf("%d\n",E::P(n,k).v); if(c=='H') printf("%d\n",E::H(n,k).v); } return 0; } /* verified on 2019/10/08 https://yukicoder.me/problems/no/117 */ signed YUKI_042(){ using M = Mint<int, int(1e9+9)>; using E = Enumeration<M>; const int MAX = 666 * 6 + 10; vector<M> dp(MAX,0); dp[0]=M(1); for(int x:{1,5,10,50,100,500}) for(int j=x;j<MAX;j++) dp[j]+=dp[j-x]; int T; scanf("%d",&T); while(T--){ using ll = long long; ll m; scanf("%lld",&m); vector<M> y(6); for(int i=0;i<6;i++) y[i]=dp[(m%500)+(i*500)]; M ans=E::LagrangePolynomial(y,M(m/500)); printf("%d\n",ans.v); } return 0; } /* verified on 2019/10/08 https://yukicoder.me/problems/no/42 */ signed CFR315_B(){ cin.tie(0); ios::sync_with_stdio(0); int n; cin>>n; using M = Mint<int>; using E = Enumeration<M>; E::init(n+1); M res; for(int i=0;i<n;i++) res+=E::C(n,i)*E::B(i,i); cout<<res.v<<endl; return 0; } /* verified on 2019/10/08 https://codeforces.com/contest/568/problem/B */ signed main(){ //ABC110_D(); //ARC009_C(); //ARC033_D(); //YUKI_117(); //YUKI_042(); //CFR315_B(); return 0; } #endif #undef call_from_test //INSERT ABOVE HERE signed YUKI_829(){ cin.tie(0); ios::sync_with_stdio(0); int n,b; cin>>n>>b; vector<int> s(n); for(int i=0;i<n;i++) cin>>s[i]; using M = Mint<int>; using E = Enumeration<M>; E::init(3e5); vector<int> cnt(n,0); for(int i=0;i<n;i++) cnt[s[i]]++; using P = pair<int, vector<M> > ; priority_queue<P> pq; pq.emplace(-1,vector<M>(1,1)); int sum=0; for(int i=n-1;i>=0;i--){ if(cnt[i]==0) continue; M x=E::H(sum,cnt[i]); M y=E::H(sum+1,cnt[i])-x; x*=E::Fact(cnt[i]); y*=E::Fact(cnt[i]); pq.emplace(-2,vector<M>({x,y})); sum+=cnt[i]; } ArbitraryModConvolution<M> arb; while(pq.size()>1u){ auto as=pq.top().second;pq.pop(); auto bs=pq.top().second;pq.pop(); auto cs=arb.multiply(as,bs); pq.emplace(-(int)cs.size(),cs); } auto dp=pq.top().second; M ans(0),res(1); for(int j=0;j<(int)dp.size();j++){ ans+=M(j)*dp[j]*res; res*=M(b); } cout<<ans.v<<endl; return 0; } /* verified on 2019/09/08 https://yukicoder.me/problems/no/829 */ signed main(){ YUKI_829(); return 0; } #endif