結果
| 問題 |
No.906 Y字グラフ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2019-10-25 16:44:22 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 3,846 bytes |
| コンパイル時間 | 1,819 ms |
| コンパイル使用メモリ | 176,996 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-20 04:47:29 |
| 合計ジャッジ時間 | 3,030 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 28 |
ソースコード
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); i++)
#define repr(i, n) for (int i = (n) - 1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define rep2r(i, l, r) for (int i = (r) - 1; i >= (l); i--)
#define range(a) a.begin(), a.end()
using namespace std;
using ll = long long;
constexpr int MOD = 1000000007;
class mint {
int n;
public:
mint(int n_ = 0) : n(n_) {}
explicit operator int() { return n; }
friend mint operator-(mint a) { return -a.n + MOD * (a.n != 0); }
friend mint operator+(mint a, mint b) { int x = a.n + b.n; return x - (x >= MOD) * MOD; }
friend mint operator-(mint a, mint b) { int x = a.n - b.n; return x + (x < 0) * MOD; }
friend mint operator*(mint a, mint b) { return (long long)a.n * b.n % MOD; }
friend mint &operator+=(mint &a, mint b) { return a = a + b; }
friend mint &operator-=(mint &a, mint b) { return a = a - b; }
friend mint &operator*=(mint &a, mint b) { return a = a * b; }
friend bool operator==(mint a, mint b) { return a.n == b.n; }
friend bool operator!=(mint a, mint b) { return a.n != b.n; }
friend istream &operator>>(istream &i, mint &a) { return i >> a.n; }
friend ostream &operator<<(ostream &o, mint a) { return o << a.n; }
};
mint operator "" _m(unsigned long long n) { return n; }
mint modinv(mint n) {
int a = (int)n, b = MOD;
int s = 1, t = 0;
while (b != 0) {
int q = a / b;
a -= q * b;
s -= q * t;
swap(a, b);
swap(s, t);
}
return s >= 0 ? s : s + MOD;
}
vector<mint> berlekamp_massey(vector<mint> s) {
const int N = s.size();
vector<mint> C(N);
vector<mint> B(N);
C[0] = 1;
B[0] = 1;
int L = 0;
int m = 1;
mint b = 1;
for (int n = 0; n < N; n++) {
mint d = s[n];
for (int i = 1; i <= L; i++) d += C[i] * s[n - i];
mint inv_b = modinv(b);
if (d == 0) {
m++;
} else if (2 * L <= n) {
auto T = C;
for (int i = 0; i + m < N; i++) C[i + m] -= B[i] * d * inv_b;
L = n + 1 - L;
B = T;
b = d;
m = 1;
} else {
for (int i = 0; i + m < N; i++) C[i + m] -= B[i] * d * inv_b;
m++;
}
}
C.resize(L + 1);
reverse(C.begin(), C.end());
assert(L < N - 1);
C.pop_back();
for (int i = 0; i < C.size(); i++) {
C[i] = -C[i];
}
return C;
}
vector<mint> poly_mod(vector<mint> a, const vector<mint> &m) {
const int n = m.size();
for (int i = a.size() - 1; i >= m.size(); i--) {
for (int j = 0; j < m.size(); j++) {
a[i - n + j] += a[i] * m[j];
}
}
a.resize(m.size());
return a;
}
// a*b mod m(x)
vector<mint> poly_mul(const vector<mint> &a, const vector<mint> &b, const vector<mint> &m) {
vector<mint> ret(a.size() + b.size() - 1);
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
ret[i + j] += a[i] * b[j];
}
}
return poly_mod(ret, m);
}
// x^n mod m(x)
vector<mint> nth_power(long long n, const vector<mint> &m) {
vector<mint> ret(1);
vector<mint> x(2);
ret[0] = x[1] = 1;
while (n > 0) {
if (n & 1) ret = poly_mul(ret, x, m);
x = poly_mul(x, x, m);
n /= 2;
}
return poly_mod(ret, m);
}
mint predict_nth(vector<mint> a, long long n) {
auto b = nth_power(n, berlekamp_massey(a));
mint res = 0;
for (int i = 0; i < b.size(); i++) {
res += a[i] * b[i];
}
return res;
}
/*
1/(1-x)(1-x^2)(1-x^3) = 1 + x + 2 x + 3 x + 4 x + 5 x + 7 x + 8 x + 10 x + 12 x
10 11 12 13 14 15 16 17
+ 14 x + 16 x + 19 x + 21 x + 24 x + 27 x + 30 x + 33 x
18 19 20
+ 37 x + 40 x + 44 x
*/
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
vector<mint> p{0,0,0,0,1,1,2,3,4,5,7,8,10,12,14,16};
ll n; cin >> n;
cout << predict_nth(p, n) << endl;
}