結果
問題 | No.916 Encounter On A Tree |
ユーザー |
![]() |
提出日時 | 2019-10-25 21:52:27 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 17 ms / 2,000 ms |
コード長 | 5,947 bytes |
コンパイル時間 | 2,774 ms |
コンパイル使用メモリ | 212,708 KB |
最終ジャッジ日時 | 2025-01-08 01:08:53 |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 5 |
other | AC * 56 |
ソースコード
#pragma GCC optimize ("Ofast")#include<bits/stdc++.h>using namespace std;#define MD (1000000007U)struct Modint{unsigned val;Modint(){}Modint(int a){val = ord(a);}Modint(unsigned a){val = ord(a);}Modint(long long a){val = ord(a);}Modint(unsigned long long a){val = ord(a);}inline unsigned ord(unsigned a){return a%MD;}inline unsigned ord(int a){a %= MD;if(a < 0){a += MD;}return a;}inline unsigned ord(unsigned long long a){return a%MD;}inline unsigned ord(long long a){a %= MD;if(a < 0){a += MD;}return a;}inline unsigned get(){return val;}inline Modint &operator+=(Modint a){val += a.val;if(val >= MD){val -= MD;}return *this;}inline Modint &operator-=(Modint a){if(val < a.val){val = val + MD - a.val;}else{val -= a.val;}return *this;}inline Modint &operator*=(Modint a){val = ((unsigned long long)val*a.val)%MD;return *this;}inline Modint &operator/=(Modint a){return *this *= a.inverse();}inline Modint operator+(Modint a){return Modint(*this)+=a;}inline Modint operator-(Modint a){return Modint(*this)-=a;}inline Modint operator*(Modint a){return Modint(*this)*=a;}inline Modint operator/(Modint a){return Modint(*this)/=a;}inline Modint operator+(int a){return Modint(*this)+=Modint(a);}inline Modint operator-(int a){return Modint(*this)-=Modint(a);}inline Modint operator*(int a){return Modint(*this)*=Modint(a);}inline Modint operator/(int a){return Modint(*this)/=Modint(a);}inline Modint operator+(long long a){return Modint(*this)+=Modint(a);}inline Modint operator-(long long a){return Modint(*this)-=Modint(a);}inline Modint operator*(long long a){return Modint(*this)*=Modint(a);}inline Modint operator/(long long a){return Modint(*this)/=Modint(a);}inline Modint operator-(void){Modint res;if(val){res.val=MD-val;}else{res.val=0;}return res;}inline operator bool(void){return val!=0;}inline operator int(void){return get();}inline operator long long(void){return get();}inline Modint inverse(){int a = val;int b = MD;int u = 1;int v = 0;int t;Modint res;while(b){t = a / b;a -= t * b;swap(a, b);u -= t * v;swap(u, v);}if(u < 0){u += MD;}res.val = u;return res;}inline Modint pw(unsigned long long b){Modint a(*this);Modint res;res.val = 1;while(b){if(b&1){res *= a;}b >>= 1;a *= a;}return res;}inline bool operator==(int a){return ord(a)==val;}inline bool operator!=(int a){return ord(a)!=val;}};inline Modint operator+(int a, Modint b){return Modint(a)+=b;}inline Modint operator-(int a, Modint b){return Modint(a)-=b;}inline Modint operator*(int a, Modint b){return Modint(a)*=b;}inline Modint operator/(int a, Modint b){return Modint(a)/=b;}inline Modint operator+(long long a, Modint b){return Modint(a)+=b;}inline Modint operator-(long long a, Modint b){return Modint(a)-=b;}inline Modint operator*(long long a, Modint b){return Modint(a)*=b;}inline Modint operator/(long long a, Modint b){return Modint(a)/=b;}inline void rd(int &x){int k;int m=0;x=0;for(;;){k = getchar_unlocked();if(k=='-'){m=1;break;}if('0'<=k&&k<='9'){x=k-'0';break;}}for(;;){k = getchar_unlocked();if(k<'0'||k>'9'){break;}x=x*10+k-'0';}if(m){x=-x;}}inline void wt_L(char a){putchar_unlocked(a);}inline void wt_L(int x){int s=0;int m=0;char f[10];if(x<0){m=1;x=-x;}while(x){f[s++]=x%10;x/=10;}if(!s){f[s++]=0;}if(m){putchar_unlocked('-');}while(s--){putchar_unlocked(f[s]+'0');}}inline void wt_L(Modint x){int i;i = (int)x;wt_L(i);}template<class T, class S> inline T pow_L(T a, S b){T res = 1;res = 1;while(b){if(b&1){res *= a;}b >>= 1;a *= a;}return res;}inline double pow_L(double a, double b){return pow(a,b);}int D;int L;int R;int K;int getdepth(int n){int res = 0;while(n >= (1<<res)){n -= (1<<res);res++;}return res;}int main(){int i;Modint res;rd(D);rd(L);L += (-1);rd(R);R += (-1);rd(K);L = getdepth(L);R = getdepth(R);if(L > R){swap(L, R);};res =pow_L(Modint(2),(R-L));K -= R - L;if(K < 0 || K % 2){wt_L(0);wt_L('\n');return 0;}K /= 2;if(L < K){wt_L(0);wt_L('\n');return 0;}res *=pow_L(Modint(2),(L - K));res *=pow_L(Modint(4),(K));if(K){res /= 2;}for(i=(0);i<(D);i++){int j;int k = (1<<i);if(L==i){k--;}if(R==i){k--;}for(j=(0);j<(k);j++){res *= j+1;}}wt_L(res);wt_L('\n');return 0;}// cLay varsion 20191012-1// --- original code ---// int D, L, R, K;//// int getdepth(int n){// int res = 0;// while(n >= (1<<res)){// n -= (1<<res);// res++;// }// return res;// }//// {// Modint res;// rd(D,L--,R--,K);// L = getdepth(L);// R = getdepth(R);// sortE(L,R);// res = Modint(2) ** (R-L);// K -= R - L;// if(K < 0 || K % 2) wt(0), return 0;// K /= 2;// if(L < K) wt(0), return 0;// res *= Modint(2) ** (L - K);// res *= Modint(4) ** (K);// if(K) res /= 2;// rep(i,D){// int k = (1<<i);// if(L==i) k--;// if(R==i) k--;// rep(j,k) res *= j+1;// }// wt(res);// }