結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
ei1333333
|
| 提出日時 | 2019-10-26 19:13:09 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,849 bytes |
| コンパイル時間 | 2,030 ms |
| コンパイル使用メモリ | 195,684 KB |
| 最終ジャッジ日時 | 2025-01-08 01:52:06 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 6 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
explicit FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
namespace FastPrimeFactorization {
using uint128_t = __uint128_t;
template< typename T, typename U >
T mod_pow(T x, U n, const T &p) {
T ret = 1;
while(n > 0) {
if(n & 1) (ret *= x) %= p;
(x *= x) %= p;
n >>= 1;
}
return ret;
}
bool miller_rabin_primality_test_uint64(uint64_t n) {
int s = __builtin_ctzll(n - 1), j;
uint64_t d = (n - 1) >> s;
for(uint64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022}) {
uint64_t t = d;
uint64_t y = mod_pow< uint128_t >(a, t, n);
if(a == 1 || a == n - 1) continue;
for(j = s - 1; j > 0; j--) {
y = uint128_t(y) * y % n;
if(y == n - 1) break;
}
if(j == 0) return false;
}
return true;
}
bool miller_rabin_primality_test_uint32(uint32_t n) {
uint32_t d = n - 1;
while(d % 2 == 0) d /= 2;
for(uint32_t a : {2, 7, 61}) {
if(n <= a) break;
uint32_t t = d;
uint32_t y = mod_pow< uint64_t >(a, t, n);
while(t != n - 1 && y != 1 && y != n - 1) {
y = uint64_t(y) * y % n;
t *= 2;
}
if(y != n - 1 && t % 2 == 0) return false;
}
return true;
}
bool is_prime(uint64_t n) {
if(n == 2) return true;
if(n == 1 || n % 2 == 0) return false;
if(n < uint64_t(1) << 32) return miller_rabin_primality_test_uint32(n);
return miller_rabin_primality_test_uint64(n);
}
/* TODO
vector< int64_t > prime_factor(int64_t n) {
if(n <= 1) return {};
int64_t p = brent(n);
if(p == n) return {p};
auto l = prime_factor(p);
auto r = prime_factor(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
*/
};
int main() {
int N;
cin >> N;
while(N--) {
int64 x;
cin >> x;
cout << x << " " << FastPrimeFactorization::is_prime(x) << "\n";
}
}
ei1333333