結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
ei1333333
|
| 提出日時 | 2019-10-26 20:30:23 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,227 bytes |
| コンパイル時間 | 2,027 ms |
| コンパイル使用メモリ | 199,656 KB |
| 最終ジャッジ日時 | 2025-01-08 01:58:33 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 WA * 1 |
ソースコード
#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in : v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e : t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
explicit FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
namespace FastPrimeFactorization {
template< typename word, typename dword, typename sword >
struct UnsafeMod {
UnsafeMod() : x(0) {}
UnsafeMod(word _x) : x(init(_x)) {}
bool operator==(const UnsafeMod &rhs) const {
return x == rhs.x;
}
bool operator!=(const UnsafeMod &rhs) const {
return x != rhs.x;
}
UnsafeMod &operator+=(const UnsafeMod &rhs) {
if((x += rhs.x) >= mod) x -= mod;
return *this;
}
UnsafeMod &operator-=(const UnsafeMod &rhs) {
if(sword(x -= rhs.x) < 0) x += mod;
return *this;
}
UnsafeMod &operator*=(const UnsafeMod &rhs) {
x = reduce(dword(x) * rhs.x);
return *this;
}
UnsafeMod operator+(const UnsafeMod &rhs) const {
return UnsafeMod(*this) += rhs;
}
UnsafeMod operator-(const UnsafeMod &rhs) const {
return UnsafeMod(*this) -= rhs;
}
UnsafeMod operator*(const UnsafeMod &rhs) const {
return UnsafeMod(*this) *= rhs;
}
UnsafeMod pow(uint64_t e) const {
UnsafeMod ret(1);
for(UnsafeMod base = *this; e; e >>= 1, base *= base) {
if(e & 1) ret *= base;
}
return ret;
}
word get() const {
return reduce(x);
}
static constexpr int word_bits = sizeof(word) * 8;
static word modulus() {
return mod;
}
static word init(word w) {
return reduce(dword(w) * r2);
}
static void set_mod(word m) {
mod = m;
inv = mul_inv(mod);
r2 = -dword(mod) % mod;
}
static word reduce(dword x) {
word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits);
return sword(y) < 0 ? y + mod : y;
}
static word mul_inv(word n, int e = 6, word x = 1) {
return !e ? x : mul_inv(n, e - 1, x * (2 - x * n));
}
static word mod, inv, r2;
word x;
};
using uint128_t = __uint128_t;
using Mod64 = UnsafeMod< uint64_t, uint128_t, int64_t >;
template<> uint64_t Mod64::mod = 0;
template<> uint64_t Mod64::inv = 0;
template<> uint64_t Mod64::r2 = 0;
using Mod32 = UnsafeMod< uint32_t, uint64_t, int32_t >;
template<> uint32_t Mod32::mod = 0;
template<> uint32_t Mod32::inv = 0;
template<> uint32_t Mod32::r2 = 0;
bool miller_rabin_primality_test_uint64(uint64_t n) {
Mod64::set_mod(n);
uint64_t d = n - 1;
while(d % 2 == 0) d /= 2;
Mod64 e{1}, rev{n - 1};
for(uint64_t a : {2, 325, 9375, 28178, 450775, 9780504}) {
if(n <= a) break;
uint64_t t = d;
Mod64 y = Mod64(a).pow(t);
while(t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if(y != rev && t % 2 == 0) return false;
}
return true;
}
bool miller_rabin_primality_test_uint32(uint32_t n) {
Mod32::set_mod(n);
uint32_t d = n - 1;
while(d % 2 == 0) d /= 2;
Mod32 e{1}, rev{n - 1};
for(uint32_t a : {2, 7, 61}) {
if(n <= a) break;
uint32_t t = d;
Mod32 y = Mod32(a).pow(t);
while(t != n - 1 && y != e && y != rev) {
y *= y;
t *= 2;
}
if(y != rev && t % 2 == 0) return false;
}
return true;
}
bool is_prime(uint64_t n) {
if(n == 2) return true;
if(n == 1 || n % 2 == 0) return false;
if(n < uint64_t(1) << 31) return miller_rabin_primality_test_uint32(n);
return miller_rabin_primality_test_uint64(n);
}
uint64_t pollard_rho(uint64_t n) {
if(is_prime(n)) return n;
if(n % 2 == 0) return 2;
Mod64::set_mod(n);
uint64_t d;
Mod64 one{1};
for(Mod64 c{one};; c += one) {
Mod64 x{2}, y{2};
do {
x = x * x + c;
y = y * y + c;
y = y * y + c;
d = __gcd((x - y).get(), n);
} while(d == 1);
if(d < n) return d;
}
assert(0);
}
vector< uint64_t > prime_factor(uint64_t n) {
if(n <= 1) return {};
uint64_t p = pollard_rho(n);
if(p == n) return {p};
auto l = prime_factor(p);
auto r = prime_factor(n / p);
copy(begin(r), end(r), back_inserter(l));
return l;
}
};
int main() {
int N;
cin >> N;
while(N--) {
int64 x;
cin >> x;
cout << x << " " << FastPrimeFactorization::is_prime(x) << "\n";
}
}
ei1333333