結果
| 問題 |
No.907 Continuous Kadomatu
|
| コンテスト | |
| ユーザー |
LayCurse
|
| 提出日時 | 2019-11-02 11:21:18 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 65 ms / 2,000 ms |
| コード長 | 12,605 bytes |
| コンパイル時間 | 3,583 ms |
| コンパイル使用メモリ | 224,152 KB |
| 最終ジャッジ日時 | 2025-01-08 02:14:31 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 25 |
ソースコード
#pragma GCC optimize ("Ofast")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
void *wmem;
char memarr[96000000];
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void wt_L(char a){
putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
putchar_unlocked('-');
}
while(s--){
putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class S, class T> inline S chmax(S &a, T b){
if(a<b){
a=b;
}
return a;
}
template<class T> struct Comb{
int mem_fact;
T *factri;
T *ifactri;
Comb(){
mem_fact = 0;
}
inline void expand_fact(int k){
if(k <= mem_fact){
return;
}
chmax(k, 2* mem_fact);
if(mem_fact == 0){
int i;
factri = (T*)malloc(k * sizeof(T));
ifactri = (T*)malloc(k * sizeof(T));
factri[0] = 1;
for(i=(1);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(0);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
else{
int i;
factri = (T*)realloc(factri, k * sizeof(T));
ifactri = (T*)realloc(ifactri, k * sizeof(T));
for(i=(mem_fact);i<(k);i++){
factri[i] = i * factri[i-1];
}
ifactri[k-1] = 1 / factri[k-1];
for(i=(k-1)-1;i>=(mem_fact);i--){
ifactri[i] = (i+1) * ifactri[i+1];
}
}
mem_fact = k;
}
inline T fac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return factri[k];
}
inline T ifac(int k){
if(mem_fact < k+1){
expand_fact(k+1);
}
return ifactri[k];
}
inline T C(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[b] * ifactri[a-b];
}
inline T P(int a, int b){
if(b < 0 || b > a){
return 0;
}
if(mem_fact < a+1){
expand_fact(a+1);
}
return factri[a] * ifactri[a-b];
}
inline T H(int a, int b){
if(a==0 && b==0){
return 1;
}
if(a <= 0 || b < 0){
return 0;
}
if(mem_fact < a+b){
expand_fact(a+b);
}
return C(a+b-1, b);
}
inline T Multinomial(int sz, int a[]){
int i;
int s = 0;
T res;
for(i=(0);i<(sz);i++){
s += a[i];
}
if(mem_fact < s+1){
expand_fact(s+1);
}
res = factri[s];
for(i=(0);i<(sz);i++){
res *= ifactri[a[i]];
}
return 1;
}
inline T Multinomial(int a){
return 1;
}
inline T Multinomial(int a, int b){
if(mem_fact < a+b+1){
expand_fact(a+b+1);
}
return factri[a+b] * ifactri[a] * ifactri[b];
}
inline T Multinomial(int a, int b, int c){
if(mem_fact < a+b+c+1){
expand_fact(a+b+c+1);
}
return factri[a+b+c] * ifactri[a] * ifactri[b] * ifactri[c];
}
inline T Multinomial(int a, int b, int c, int d){
if(mem_fact < a+b+c+d+1){
expand_fact(a+b+c+d+1);
}
return factri[a+b+c+d] * ifactri[a] * ifactri[b] * ifactri[c] * ifactri[d];
}
inline T Catalan(int n){
if(n < 0){
return 0;
}
if(mem_fact < 2*n+1){
expand_fact(2*n+1);
}
return factri[2*n] * ifactri[n] * ifactri[n+1];
}
inline T C_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
if(b > a - b){
b = a - b;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
res /= i + 1;
}
return res;
}
inline T P_s(long long a, long long b){
long long i;
T res;
if(b < 0 || b > a){
return 0;
}
res = 1;
for(i=(0);i<(b);i++){
res *= a - i;
}
return res;
}
inline T per_s(long long n, long long k){
T d;
int m;
if(n < 0 || k < 0){
return 0;
}
if(n == k && k == 0){
return 1;
}
if(n == 0 || k == 0){
return 0;
}
if(k==1){
return 1;
}
if(k==2){
d = n / 2;
return d;
}
if(k==3){
d = (n-1) / 6;
m = (n-1) % 6;
if(m==0){
return 3 * d * d + d;
}
if(m==1){
return 3 * d * d + 2 * d;
}
if(m==2){
return 3 * d * d + 3 * d + 1;
}
if(m==3){
return 3 * d * d + 4 * d + 1;
}
if(m==4){
return 3 * d * d + 5 * d + 2;
}
if(m==5){
return 3 * d * d + 6 * d + 3;
}
}
assert(0 && "per_s should be k <= 3");
return -1;
}
}
;
template<class T> int coordcomp_L(int n1, T arr1[], int n2, T arr2[], int res1[] = NULL, int res2[] = NULL, void *mem = wmem){
int i;
int k = 0;
pair<T,int> *r;
walloc1d(&r, n1+n2, &mem);
for(i=(0);i<(n1);i++){
r[i].first = arr1[i];
r[i].second = i;
}
for(i=(0);i<(n2);i++){
r[n1+i].first = arr2[i];
r[n1+i].second = n1+i;
}
sort(r, r+n1+n2);
for(i=(0);i<(n1+n2);i++){
if(i && r[i].first != r[i-1].first){
k++;
}
if(r[i].second < n1){
if(res1!=NULL){
res1[r[i].second] = k;
}
else{
arr1[r[i].second] = k;
}
}
else{
if(res2!=NULL){
res2[r[i].second-n1] = k;
}
else{
arr2[r[i].second-n1] = k;
}
}
}
return k+1;
}
int N;
int A[200];
int B[200];
int x[200];
int y[200];
int v[400];
int m;
Modint dp[200][400];
Modint dp2[200][400];
Modint w[400];
Modint abwi[200];
Modint coef[201];
Modint dd[201];
Modint nn[201];
int main(){
int i, k, n;
wmem = memarr;
int s;
int e;
Modint res;
Modint tmp;
Modint mul;
Comb<Modint> comb;
rd(N);
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
rd(A[Lj4PdHRW]);
rd(B[Lj4PdHRW]);
}
}
for(n=(1);n<(N+1);n++){
int i, k;
for(i=(0);i<(n);i++){
dd[i] = 0;
}
dd[n] = 1;
for(k=(0);k<(n);k++){
s = n - k;
nn[0] = dd[s];
for(i=(1);i<(s);i++){
nn[i] = nn[i-1] + dd[s-i];
}
for(i=(0);i<(s);i++){
dd[i] = nn[i];
}
}
coef[n] = dd[0] * comb.ifac(n);
}
m =coordcomp_L(N, A, N, B, x, y)- 1;
for(i=(0);i<(N);i++){
v[x[i]] = A[i];
v[y[i]] = B[i];
}
for(i=(0);i<(m);i++){
w[i] = v[i+1] - v[i];
}
for(i=(0);i<(N);i++){
abwi[i] = Modint(1) / Modint(B[i] - A[i]);
}
for(k=(0);k<(m);k++){
if(x[0] <= k && k < y[0]){
dp[0][k] = dp2[0][k] = w[k] * abwi[0];
}
}
for(i=(1);i<(N);i++){
for(k=(0);k<(m);k++){
if(x[i] <= k && k < y[i]){
int j, z;
tmp = w[k] * abwi[i];
if(i%2==0){
s = k+1;
e = m;
}
else{
s = 0;
e = k;
}
for(j=(s);j<(e);j++){
dp[i][k] += tmp * dp[i-1][j];
}
dp2[i][k] = dp[i][k];
mul = 1;
for(z=(i)-1;z>=(0);z--){
if(!(x[z] <= k && k < y[z])){
break;
}
dp[i][k] += tmp * dp2[z][k] * coef[i-z+1] * mul;
mul *= w[k] * abwi[z];
}
}
}
}
res = 0;
for(k=(0);k<(m);k++){
res += dp[N-1][k];
}
wt_L(res);
wt_L('\n');
return 0;
}
// cLay varsion 20191102-1
// --- original code ---
// int N, A[200], B[200];
// int x[200], y[200], v[400], m;
// Modint dp[200][400], dp2[200][400], w[400], abwi[200];
// Modint coef[201], dd[201], nn[201];
// {
// int s, e;
// Modint res, tmp, mul;
// Comb<Modint> comb;
// rd(N,(A,B)(N));
//
// rep(n,1,N+1){
// rep(i,n) dd[i] = 0;
// dd[n] = 1;
// rep(k,n){
// s = n - k;
// nn[0] = dd[s];
// rep(i,1,s) nn[i] = nn[i-1] + dd[s-i];
// rep(i,s) dd[i] = nn[i];
// }
// coef[n] = dd[0] * comb.ifac(n);
// }
//
//
// m = coordcomp(N, A, N, B, x, y) - 1;
// rep(i,N) v[x[i]] = A[i], v[y[i]] = B[i];
// rep(i,m) w[i] = v[i+1] - v[i];
// rep(i,N) abwi[i] = Modint(1) / Modint(B[i] - A[i]);
//
// rep(k,m) if(x[0] <= k < y[0]) dp[0][k] = dp2[0][k] = w[k] * abwi[0];
//
// rep(i,1,N){
// rep(k,m) if(x[i] <= k < y[i]){
// tmp = w[k] * abwi[i];
// if(i%2==0) s = k+1, e = m;
// else s = 0, e = k;
// rep(j,s,e) dp[i][k] += tmp * dp[i-1][j];
// dp2[i][k] = dp[i][k];
// mul = 1;
// rrep(z,i){
// if(!(x[z] <= k < y[z])) break;
// dp[i][k] += tmp * dp2[z][k] * coef[i-z+1] * mul;
// mul *= w[k] * abwi[z];
// }
// }
// }
//
// res = 0;
// rep(k,m) res += dp[N-1][k];
// wt(res);
// }
LayCurse