結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | Haar |
提出日時 | 2019-11-06 13:02:43 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,911 bytes |
コンパイル時間 | 2,674 ms |
コンパイル使用メモリ | 202,296 KB |
実行使用メモリ | 8,448 KB |
最終ジャッジ日時 | 2024-11-18 17:38:38 |
合計ジャッジ時間 | 29,687 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 5,975 ms
5,248 KB |
testcase_05 | AC | 5,552 ms
5,248 KB |
testcase_06 | AC | 1,409 ms
5,248 KB |
testcase_07 | AC | 1,384 ms
5,248 KB |
testcase_08 | AC | 1,382 ms
5,248 KB |
testcase_09 | TLE | - |
ソースコード
#include <bits/stdc++.h> #define LLI long long int #define FOR(v, a, b) for(LLI v = (a); v < (b); ++v) #define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v) #define REP(v, n) FOR(v, 0, n) #define REPE(v, n) FORE(v, 0, n) #define REV(v, a, b) for(LLI v = (a); v >= (b); --v) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it) #define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it) #define EXIST(c,x) ((c).find(x) != (c).end()) #define fst first #define snd second #define popcount __builtin_popcount #define UNIQ(v) (v).erase(unique(ALL(v)), (v).end()) #define bit(i) (1LL<<(i)) #ifdef DEBUG #include <misc/C++/Debug.cpp> #else #define dump(...) ((void)0) #endif #define gcd __gcd using namespace std; template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;} template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;} template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;} template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);} template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);} template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);} struct Init{ Init(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(12); cerr << fixed << setprecision(12); } }init; class MillerRabin{ static uint64_t power(uint64_t a, uint64_t b, uint64_t p){ uint64_t ret = 1; while(b > 0){ if(b & 1) ret = mul(ret, a, p); a = mul(a, a, p); b >>= 1; } return ret; } static uint64_t add(uint64_t a, uint64_t b, uint64_t p){ uint64_t t; if(__builtin_uaddll_overflow(a, b, (long long unsigned int*)&t)){ return (a + b - p) % p; }else{ return (a + b) % p; } } static uint64_t mul(uint64_t a, uint64_t b, uint64_t p){ uint64_t t; if(__builtin_umulll_overflow(a, b, (long long unsigned int*)&t)){ uint64_t ret = 0; while(b > 0){ if(b & 1) ret = add(ret, a, p); a = add(a, a, p); b >>= 1; } return ret; }else{ return a * b % p; } } static bool is_composite(uint64_t a, uint64_t p){ int s = 0; uint64_t d = p-1; while((d & 1) == 0){ s += 1; d >>= 1; } uint64_t x = power(a, d, p); if(x == 1) return false; for(int i = 0; i < s; ++i){ if(x == p-1) return false; x = mul(x, x, p); } return true; } public: static bool is_prime(uint64_t n){ if(n <= 1) return false; if(n == 2) return true; if(n % 2 == 0) return false; if(n < 4759123141){ if(2 < n and is_composite(2, n)) return false; if(7 < n and is_composite(7, n)) return false; if(61 < n and is_composite(61, n)) return false; return true; } if(2 < n and is_composite(2, n)) return false; if(3 < n and is_composite(3, n)) return false; if(5 < n and is_composite(5, n)) return false; if(7 < n and is_composite(7, n)) return false; if(11 < n and is_composite(11, n)) return false; if(13 < n and is_composite(13, n)) return false; if(17 < n and is_composite(17, n)) return false; if(19 < n and is_composite(19, n)) return false; if(23 < n and is_composite(23, n)) return false; if(29 < n and is_composite(29, n)) return false; if(31 < n and is_composite(31, n)) return false; if(37 < n and is_composite(37, n)) return false; return true; } }; int main(){ int n; cin >> n; REP(i,n){ LLI x; cin >> x; cout << x << " " << MillerRabin::is_prime(x) << endl; } return 0; }