結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
|
| 提出日時 | 2019-11-06 13:02:43 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,911 bytes |
| コンパイル時間 | 2,155 ms |
| コンパイル使用メモリ | 195,412 KB |
| 最終ジャッジ日時 | 2025-01-08 02:20:59 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 TLE * 1 |
ソースコード
#include <bits/stdc++.h>
#define LLI long long int
#define FOR(v, a, b) for(LLI v = (a); v < (b); ++v)
#define FORE(v, a, b) for(LLI v = (a); v <= (b); ++v)
#define REP(v, n) FOR(v, 0, n)
#define REPE(v, n) FORE(v, 0, n)
#define REV(v, a, b) for(LLI v = (a); v >= (b); --v)
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define ITR(it, c) for(auto it = (c).begin(); it != (c).end(); ++it)
#define RITR(it, c) for(auto it = (c).rbegin(); it != (c).rend(); ++it)
#define EXIST(c,x) ((c).find(x) != (c).end())
#define fst first
#define snd second
#define popcount __builtin_popcount
#define UNIQ(v) (v).erase(unique(ALL(v)), (v).end())
#define bit(i) (1LL<<(i))
#ifdef DEBUG
#include <misc/C++/Debug.cpp>
#else
#define dump(...) ((void)0)
#endif
#define gcd __gcd
using namespace std;
template <class T> constexpr T lcm(T m, T n){return m/gcd(m,n)*n;}
template <typename I> void join(ostream &ost, I s, I t, string d=" "){for(auto i=s; i!=t; ++i){if(i!=s)ost<<d; ost<<*i;}ost<<endl;}
template <typename T> istream& operator>>(istream &is, vector<T> &v){for(auto &a : v) is >> a; return is;}
template <typename T, typename U> bool chmin(T &a, const U &b){return (a>b ? a=b, true : false);}
template <typename T, typename U> bool chmax(T &a, const U &b){return (a<b ? a=b, true : false);}
template <typename T, size_t N, typename U> void fill_array(T (&a)[N], const U &v){fill((U*)a, (U*)(a+N), v);}
struct Init{
Init(){
cin.tie(0);
ios::sync_with_stdio(false);
cout << fixed << setprecision(12);
cerr << fixed << setprecision(12);
}
}init;
class MillerRabin{
static uint64_t power(uint64_t a, uint64_t b, uint64_t p){
uint64_t ret = 1;
while(b > 0){
if(b & 1) ret = mul(ret, a, p);
a = mul(a, a, p);
b >>= 1;
}
return ret;
}
static uint64_t add(uint64_t a, uint64_t b, uint64_t p){
uint64_t t;
if(__builtin_uaddll_overflow(a, b, (long long unsigned int*)&t)){
return (a + b - p) % p;
}else{
return (a + b) % p;
}
}
static uint64_t mul(uint64_t a, uint64_t b, uint64_t p){
uint64_t t;
if(__builtin_umulll_overflow(a, b, (long long unsigned int*)&t)){
uint64_t ret = 0;
while(b > 0){
if(b & 1) ret = add(ret, a, p);
a = add(a, a, p);
b >>= 1;
}
return ret;
}else{
return a * b % p;
}
}
static bool is_composite(uint64_t a, uint64_t p){
int s = 0;
uint64_t d = p-1;
while((d & 1) == 0){
s += 1;
d >>= 1;
}
uint64_t x = power(a, d, p);
if(x == 1) return false;
for(int i = 0; i < s; ++i){
if(x == p-1) return false;
x = mul(x, x, p);
}
return true;
}
public:
static bool is_prime(uint64_t n){
if(n <= 1) return false;
if(n == 2) return true;
if(n % 2 == 0) return false;
if(n < 4759123141){
if(2 < n and is_composite(2, n)) return false;
if(7 < n and is_composite(7, n)) return false;
if(61 < n and is_composite(61, n)) return false;
return true;
}
if(2 < n and is_composite(2, n)) return false;
if(3 < n and is_composite(3, n)) return false;
if(5 < n and is_composite(5, n)) return false;
if(7 < n and is_composite(7, n)) return false;
if(11 < n and is_composite(11, n)) return false;
if(13 < n and is_composite(13, n)) return false;
if(17 < n and is_composite(17, n)) return false;
if(19 < n and is_composite(19, n)) return false;
if(23 < n and is_composite(23, n)) return false;
if(29 < n and is_composite(29, n)) return false;
if(31 < n and is_composite(31, n)) return false;
if(37 < n and is_composite(37, n)) return false;
return true;
}
};
int main(){
int n; cin >> n;
REP(i,n){
LLI x; cin >> x;
cout << x << " " << MillerRabin::is_prime(x) << endl;
}
return 0;
}