結果
問題 | No.922 東北きりきざむたん |
ユーザー | satanic |
提出日時 | 2019-11-08 22:01:39 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 165 ms / 2,000 ms |
コード長 | 8,913 bytes |
コンパイル時間 | 1,826 ms |
コンパイル使用メモリ | 142,496 KB |
実行使用メモリ | 42,492 KB |
最終ジャッジ日時 | 2024-09-15 01:29:14 |
合計ジャッジ時間 | 5,405 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 26 |
ソースコード
// need #include <iostream> #include <algorithm> // data structure #include <bitset> #include <map> #include <queue> #include <set> #include <stack> #include <string> #include <utility> #include <vector> #include <complex> //#include <deque> #include <valarray> #include <unordered_map> #include <unordered_set> #include <array> // etc #include <cassert> #include <cmath> #include <functional> #include <iomanip> #include <chrono> #include <random> #include <numeric> #include <fstream> // input #define INIT std::ios::sync_with_stdio(false);std::cin.tie(0); #define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template<typename T> void MACRO_VAR_Scan(T& t) { std::cin >> t; } template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest& ...rest) { std::cin >> first; MACRO_VAR_Scan(rest...); } #define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int w_=0; w_<n; ++w_){MACRO_VEC_ROW_Scan(w_, __VA_ARGS__);} template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); } template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest& ...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); } template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { std::cin >> t[p]; } template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest& ...rest) { std::cin >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); } #define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)std::cin>>i; #define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& R:c)for(auto& w:R)std::cin>>w; // output template<typename T>void MACRO_OUT(const T t) { std::cout << t; } template<typename First, typename...Rest>void MACRO_OUT(const First first, const Rest...rest) { std::cout << first << " "; MACRO_OUT(rest...); } #define OUT(...) MACRO_OUT(__VA_ARGS__); #define FOUT(n, dist) std::cout<<std::fixed<<std::setprecision(n)<<(dist); #define SOUT(n, c, dist) std::cout<<std::setw(n)<<std::setfill(c)<<(dist); #define SP std::cout<<" "; #define TAB std::cout<<"\t"; #define BR std::cout<<"\n"; #define SPBR(w, n) std::cout<<(w + 1 == n ? '\n' : ' '); #define ENDL std::cout<<std::endl; #define FLUSH std::cout<<std::flush; #define SHOW(dist) {std::cerr << #dist << "\t: " << (dist) << "\n";} #define SHOWVECTOR(v) {std::cerr << #v << "\t: ";for(const auto& xxx : v){std::cerr << xxx << " ";}std::cerr << "\n";} #define SHOWVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr << yyy << " ";}std::cerr << "\n";}} #define SHOWQUEUE(a) {auto tmp(a);std::cerr << #a << "\t: ";while(!tmp.empty()){std::cerr << tmp.front() << " ";tmp.pop();}std::cerr << "\n";} #define SHOWSTACK(a) {auto tmp(a);std::cerr << #a << "\t: ";while(!tmp.empty()){std::cerr << tmp.top() << " ";tmp.pop();}std::cerr << "\n";} // utility #define ALL(a) (a).begin(),(a).end() #define FOR(w, a, n) for(int w=(a);w<(n);++w) #define RFOR(w, a, n) for(int w=(n)-1;w>=(a);--w) #define REP(w, n) for(int w=0;w<int(n);++w) #define RREP(w, n) for(int w=int(n)-1;w>=0;--w) #define IN(a, x, b) (a<=x && x<b) template<class T> inline T CHMAX(T & a, const T b) { return a = (a < b) ? b : a; } template<class T> inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; } // test template<class T> using V = std::vector<T>; template<class T> using VV = V<V<T>>; template<typename S, typename T> std::ostream& operator<<(std::ostream& os, std::pair<S, T> p) { os << "(" << p.first << ", " << p.second << ")"; return os; } // type/const #define int ll using ll = long long; using ull = unsigned long long; using ld = long double; using PAIR = std::pair<int, int>; using PAIRLL = std::pair<ll, ll>; constexpr int INFINT = (1 << 30) - 1; // 1.07x10^ 9 constexpr int INFINT_LIM = (1LL << 31) - 1; // 2.15x10^ 9 constexpr ll INFLL = 1LL << 60; // 1.15x10^18 constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62); // 9.22x10^18 constexpr double EPS = 1e-10; constexpr int MOD = 998244353; constexpr double PI = 3.141592653589793238462643383279; template<class T, size_t N> void FILL(T(&a)[N], const T & val) { for (auto& x : a) x = val; } template<class ARY, size_t N, size_t M, class T> void FILL(ARY(&a)[N][M], const T & val) { for (auto& b : a) FILL(b, val); } template<class T> void FILL(std::vector<T> & a, const T & val) { for (auto& x : a) x = val; } template<class ARY, class T> void FILL(std::vector<std::vector<ARY>> & a, const T & val) { for (auto& b : a) FILL(b, val); } // ------------>8------------------------------------->8------------ class UnionFind { private: std::vector<int> par; std::vector<int> siz; public: UnionFind(int sz_) : par(sz_), siz(sz_, 1) { for (int i = 0; i < sz_; ++i) par[i] = i; } void init(int sz_) { par.resize(sz_); siz.resize(sz_, 1); for (int i = 0; i < sz_; ++i) par[i] = i; } int find(int x) { while (par[x] != x) x = par[x] = par[par[x]]; return x; } void unite(int x, int y) { x = find(x); y = find(y); if (x == y) return; if (siz[x] < siz[y]) std::swap(x, y); siz[x] += siz[y]; par[y] = x; } bool same(int x, int y) { return find(x) == find(y); } int size(int x) { return siz[find(x)]; } }; // write [ LCA lca(g, root); ] when using this snippet. class LCA { private: const std::vector<std::vector<int>>& graph; // graph's list expression int root; int n; // the number of nodes int log2n; // = floor(log2(n)) + 1 std::vector<std::vector<int>> parent; // parent[x][v] = a parent(above 2^x) of v (nonexistence -> -1) std::vector<int> depth; // the depth of each node public: LCA(const std::vector<std::vector<int>>& graph, int root) : graph(graph), root(root), n(graph.size()), log2n(std::floor(std::log2(n) + 1)), parent(log2n, std::vector<int>(n, 0)), depth(n, 0) { init(); } // Check the depth of each node(node "v" -> parent is "p", depth is "d") void dfs(int v, int p, int d) { std::stack<int> stack; stack.push(v); parent[0][v] = p; depth[v] = d; while (!stack.empty()) { int now = stack.top(); stack.pop(); for (int i = 0; i < graph[now].size(); ++i) { int to = graph[now][i]; if (to == parent[0][now]) continue; parent[0][to] = now; depth[to] = depth[now] + 1; stack.push(to); // Check each child of v } } } // Initialize void init() { // Initialize "parent[0]" and "depth" dfs(root, -1, 0); // Initialize "parent" for (int k = 0; k < log2n - 1; ++k) { for (int v = 0; v < n; ++v) { if (parent[k][v] < 0) { // If parent above 2^k of v is nonexistence parent[k + 1][v] = -1; } else { parent[k + 1][v] = parent[k][parent[k][v]]; } } } } // Find LCA of (u, v) int lca(int u, int v) { // go up parent while depth of u and v is same if (depth[u] > depth[v]) std::swap(u, v); for (int k = 0; k < log2n; ++k) { if ((depth[v] - depth[u]) >> k & 1) { v = parent[k][v]; // go up to 2^k if k-th binary is 1 } } if (u == v) return u; // this case is that v is in u's subtree // Find LCA by binary searching for (int k = log2n - 1; k >= 0; --k) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } }; signed main() { INIT; VAR(int, n, m, q); VEC_ROW(int, m, a, b); VEC_ROW(int, q, qa, qb); std::vector<std::vector<int>> g(n); UnionFind uf(n); REP(i, m) { --a[i]; --b[i]; g[a[i]].emplace_back(b[i]); g[b[i]].emplace_back(a[i]); uf.unite(a[i], b[i]); } auto G(g); G.emplace_back(); V<int> roots; REP(i, n) { if (uf.find(i) == i) { G[n].emplace_back(i); G[i].emplace_back(n); roots.emplace_back(i); } } LCA lca(G, n); V<int> depthG(n + 1, INFINT); { depthG[n] = 0; auto rec = [&](auto && f, int v, int par) -> void { for (auto& to : G[v]) if (to != par) { depthG[to] = depthG[v] + 1; f(f, to, v); } }; rec(rec, n, -1); } V<int> w(n, 0); int ans = 0; REP(i, q) { --qa[i]; --qb[i]; if (uf.same(qa[i], qb[i])) { ans += depthG[qa[i]] + depthG[qb[i]] - 2 * depthG[lca.lca(qa[i], qb[i])]; } else { ++w[qa[i]]; ++w[qb[i]]; } } V<int> cnt(n, 0); V<int> dp(n, 0); for (const auto& root : roots) { { auto rec = [&](auto && f, int v, int par) -> void { cnt[v] = w[v]; dp[v] = 0; for (auto& to : g[v]) if (to != par) { f(f, to, v); cnt[v] += cnt[to]; dp[v] += dp[to] + cnt[to]; } }; rec(rec, root, -1); } int tans = INFLL; { auto rec = [&](auto && f, int v, int par, int pcnt, int psum) -> void { CHMIN(tans, dp[v] + psum); for (auto& to : g[v]) if (to != par) { f(f, to, v, pcnt + cnt[v] - cnt[to], psum + pcnt + (dp[v] - dp[to] - cnt[to]) + (cnt[v] - cnt[to])); } }; rec(rec, root, -1, 0, 0); } ans += tans; } OUT(ans)BR; return 0; }